\(\frac{n!}{\left(n-3\right)!}=\frac{72.n!}{\left(n-1\right)!}\Leftrightarrow\left(n-1\right)\left(n-2\right)=72\)
\(\Leftrightarrow n^2-3n-70=0\Rightarrow\left[{}\begin{matrix}n=10\\n=-7\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sum\limits^n_{k=0}C_n^k=\sum\limits^{10}_{k=0}C_{10}^k\)
Xét khai triển:
\(\left(x+1\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k.x^k\)
Thay \(x=1\) ta được: \(2^{10}=\sum\limits^{10}_{k=0}C_{10}^k\)
Vậy kết quả bài toán: \(2^{10}=1024\)