Ôn thi vào 10

LA

Giải hệ phương trình:\(\left\{{}\begin{matrix}2x+3y=xy+5\\\dfrac{1}{x}+\dfrac{1}{y+1}=1\end{matrix}\right.\)

LH
23 tháng 5 2021 lúc 14:36

Đk: \(x\ne0,y\ne-1\)

\(\left\{{}\begin{matrix}2x+3y=xy+5\left(1\right)\\\dfrac{1}{x}+\dfrac{1}{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=xy+5\\y+1+x=x\left(y+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=xy+5\\y+1=xy\end{matrix}\right.\)

\(\Rightarrow2x+3y=y+1+5\)

\(\Leftrightarrow x=3-y\) thay vào (1) có:

\(2\left(3-y\right)+3y=\left(3-y\right)y+5\)

\(\Leftrightarrow y^2-2y+1=0\)

\(\Leftrightarrow y=1\) \(\Rightarrow x=2\)(tm)

Vậy (x;y)=(2;1)

 

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
HW
Xem chi tiết
H24
Xem chi tiết
UI
Xem chi tiết
PP
Xem chi tiết
UI
Xem chi tiết
LB
Xem chi tiết
TN
Xem chi tiết
KD
Xem chi tiết