Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 9

HN

giải hệ phương trình sau:

\(\left\{{}\begin{matrix}x\sqrt{y}+y\sqrt{x}=30\\x\sqrt{x}+y\sqrt{y}=35\end{matrix}\right.\)

AH
7 tháng 1 2020 lúc 16:38

Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} \sqrt{xy}(\sqrt{x}+\sqrt{y})=30(1)\\ (\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)=35\end{matrix}\right.\)

\(\Rightarrow 35\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)\)

\(\Leftrightarrow (\sqrt{x}+\sqrt{y}))(30x-65\sqrt{xy}+30y)=0\)

Nếu $\sqrt{x}+\sqrt{y}=0$ thì từ $(1)$ suy ra $\sqrt{xy}.0=30$ (vô lý)

Nếu $30x-65\sqrt{xy}+30y=0$

$\Leftrightarrow 6x-13\sqrt{xy}+6y=0$

$\Leftrightarrow (2\sqrt{x}-3\sqrt{y})(3\sqrt{x}-2\sqrt{y})=0$

$\Rightarrow \sqrt{x}=\frac{3}{2}\sqrt{y}$ hoặc $\sqrt{x}=\frac{2}{3}\sqrt{y}$

Thay lần lượt từng TH vào $(1)\Rightarrow (x,y)=(9,4); (4,9)$

Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} \sqrt{xy}(\sqrt{x}+\sqrt{y})=30(1)\\ (\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)=35\end{matrix}\right.\)

\(\Rightarrow 35\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)\)

\(\Leftrightarrow (\sqrt{x}+\sqrt{y}))(30x-65\sqrt{xy}+30y)=0\)

Nếu $\sqrt{x}+\sqrt{y}=0$ thì từ $(1)$ suy ra $\sqrt{xy}.0=30$ (vô lý)

Nếu $30x-65\sqrt{xy}+30y=0$

$\Leftrightarrow 6x-13\sqrt{xy}+6y=0$

$\Leftrightarrow (2\sqrt{x}-3\sqrt{y})(3\sqrt{x}-2\sqrt{y})=0$

$\Rightarrow \sqrt{x}=\frac{3}{2}\sqrt{y}$ hoặc $\sqrt{x}=\frac{2}{3}\sqrt{y}$

Thay lần lượt từng TH vào $(1)\Rightarrow (x,y)=(9,4); (4,9)$

Bình luận (0)
 Khách vãng lai đã xóa
AH
11 tháng 1 2020 lúc 23:53

Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} \sqrt{xy}(\sqrt{x}+\sqrt{y})=30(1)\\ (\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)=35\end{matrix}\right.\)

\(\Rightarrow 35\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)\)

\(\Leftrightarrow (\sqrt{x}+\sqrt{y}))(30x-65\sqrt{xy}+30y)=0\)

Nếu $\sqrt{x}+\sqrt{y}=0$ thì từ $(1)$ suy ra $\sqrt{xy}.0=30$ (vô lý)

Nếu $30x-65\sqrt{xy}+30y=0$

$\Leftrightarrow 6x-13\sqrt{xy}+6y=0$

$\Leftrightarrow (2\sqrt{x}-3\sqrt{y})(3\sqrt{x}-2\sqrt{y})=0$

$\Rightarrow \sqrt{x}=\frac{3}{2}\sqrt{y}$ hoặc $\sqrt{x}=\frac{2}{3}\sqrt{y}$

Thay lần lượt từng TH vào $(1)\Rightarrow (x,y)=(9,4); (4,9)$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TA
Xem chi tiết
HA
Xem chi tiết
BB
Xem chi tiết
TN
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
TN
Xem chi tiết