ĐKXĐ:...
Biến đổi pt dưới:
\(x^2y^2-4xy+4=16xy+16-16x-16y\)
\(\Leftrightarrow\left(xy-2\right)^2=16\left(x-1\right)\left(y-1\right)\)
\(\Leftrightarrow\left|xy-2\right|=4\sqrt{\left(x-1\right)\left(y-1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=a^2+1\\y=b^2+1\end{matrix}\right.\)
Ta được hệ:
\(\left\{{}\begin{matrix}\left(a^2+1\right)b+\left(b^2+1\right)a=1\\\left|\left(a^2+1\right)\left(b^2+1\right)-2\right|=4ab\end{matrix}\right.\)
Đây là hệ đối xứng, hy vọng bạn tự giải được :(