Violympic toán 9

H24

giải hệ phương trình: \(\left\{{}\begin{matrix}x^3-2y^3=x+4y\\6x^2-19xy+15y^2=1\end{matrix}\right.\)

TQ
1 tháng 1 2019 lúc 18:38

\(\left\{{}\begin{matrix}x^3-2y^3=x+4y\left(1\right)\\6x^2-19xy+15y^2=1\left(2\right)\end{matrix}\right.\)

_ Xét y=0 không phải là nghiệm của hệ phương trình

_ Xét y\(\ne0\)

Đặt x=ty

Ta có (1)\(\Leftrightarrow t^3y^3-2y^3=ty+4y\Leftrightarrow t^3y^2-2y^2=t+4\Leftrightarrow y^2=\dfrac{t+4}{t^3-2}\left(3\right)\)

(2)\(\Leftrightarrow6t^2y^2-19ty^2+15y^2=1\Leftrightarrow y^2\left(6t^2-19t+15\right)=1\Leftrightarrow y^2=\dfrac{1}{6t^2-19t+15}\left(4\right)\)

Từ (3),(4)\(\Rightarrow\)\(\dfrac{t+4}{t^3-2}=\dfrac{1}{6t^2-19t+15}\Leftrightarrow t^3-2=\left(t+4\right)\left(6t^2-19t+15\right)\Leftrightarrow t^3-2=6t^3-19t^2+15t+24t^2-76t+60\Leftrightarrow5t^3+5t^2-61t+62=0\Leftrightarrow\left(t-2\right)\left(5t^2+15t-31\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}t=2\\t=\dfrac{-15+13\sqrt{5}}{10}\\t=\dfrac{-15-13\sqrt{5}}{10}\end{matrix}\right.\)

Từ đó tìm x,y

Bình luận (1)

Các câu hỏi tương tự
HA
Xem chi tiết
LS
Xem chi tiết
NH
Xem chi tiết
HT
Xem chi tiết
PT
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết
DA
Xem chi tiết
VH
Xem chi tiết