Violympic toán 9

NC

Giải hệ phương trình :

\(\left\{{}\begin{matrix}x^3-2x^2y+x=y^3-2xy^2+y\\\sqrt{y-1}+\sqrt{5-y}=-x^2+2y+1\end{matrix}\right.\)

AH
14 tháng 11 2017 lúc 20:46

Lời giải:

PT(1): \(x^3-2x^2y+x=y^3-2xy^2+y\)

\(\Leftrightarrow (x^3-y^3)-2xy(x-y)+(x-y)=0\)

\(\Leftrightarrow (x-y)(x^2+xy+y^2)-2xy(x-y)+(x-y)=0\)

\(\Leftrightarrow (x-y)(x^2-xy+y^2+1)=0\)

Ta thấy:

\(x^2-xy+y^2+1=(x-\frac{y}{2})^2+\frac{3y^2}{4}+1\geq 1>0\) với mọi số thực x,y

Do đó: \(x-y=0\Leftrightarrow x=y\)

Thay vào PT(2):

\(\sqrt{y-1}+\sqrt{5-y}=-y^2+2y+1\)

Xét: \(\text{VT}^2=4+2\sqrt{(y-1)(5-y)}\geq 4\) nên \(\text{VT}\geq 2\) hoặc \(\text{VT}\leq -2\). Mà vế trái luôn không âm nên:

\(\Rightarrow \text{VT}\geq 2\)

Xét \(\text{VP}=-(y^2-2y+1)+2=2-(y-1)^2\leq 2\forall y\in\mathbb{R}\)

\(\text{VT}=\text{VP}\Leftrightarrow \text{VT}=\text{VP}=2\)

Dấu bằng xảy ra khi \(y=1\)

Vậy \((x,y)=(1,1)\)

Bình luận (0)

Các câu hỏi tương tự
MD
Xem chi tiết
KA
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
KN
Xem chi tiết
KZ
Xem chi tiết
KZ
Xem chi tiết
WY
Xem chi tiết
MS
Xem chi tiết