Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

LN

giải hệ phuong trình :\(\left\{{}\begin{matrix}\left(\sqrt{x^2+1}+x\right)\left(\sqrt{y^2+1}-y\right)=1\\3\sqrt{x+2y-2}+x\sqrt{x-2y+6}=10\end{matrix}\right.\)

NL
27 tháng 9 2020 lúc 21:41

\(\left(\sqrt{x^2+1}+x\right)\left(\sqrt{y^2+1}-y\right)=1\)

\(\Leftrightarrow\sqrt{x^2+1}+x=\sqrt{y^2+1}+y\) (1)

Tương tự ta có: \(\sqrt{y^2+1}-y=\sqrt{x^2+1}-x\) (2)

Cộng vế (1) và (2) \(\Rightarrow x-y=y-x\Rightarrow x=y\)

Thế xuống dưới:

\(3\sqrt{3x-2}+x\sqrt{6-x}=10\)

Đặt \(\sqrt{6-x}=a\Rightarrow\left\{{}\begin{matrix}0\le a\le\frac{4\sqrt{3}}{3}\\x=6-a^2\end{matrix}\right.\)

\(\Rightarrow a^3-6a+10-3\sqrt{16-3a^2}=0\)

\(\Leftrightarrow\left(a^3-3a-2\right)+3\left(4-a-\sqrt{16-3a^2}\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a+1\right)^2+\frac{12a\left(a-2\right)}{4-a+\sqrt{16-a^2}}=0\)

\(\Leftrightarrow\left(a-2\right)\left[\left(a+1\right)^2+\frac{12a}{4-a+\sqrt{16-a^2}}\right]=0\)

\(\Leftrightarrow a=2\Leftrightarrow...\)

Bình luận (0)

Các câu hỏi tương tự
DV
Xem chi tiết
PT
Xem chi tiết
DV
Xem chi tiết
PT
Xem chi tiết
KR
Xem chi tiết
TN
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết