Chương III - Hệ hai phương trình bậc nhất hai ẩn

LM

Giải hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{x}{y}-\dfrac{x}{y+12}=1\\\dfrac{x}{y-12}-\dfrac{x}{y}=2\end{matrix}\right.\)

PA
1 tháng 11 2017 lúc 15:16

\(\left\{{}\begin{matrix}\dfrac{x}{y}-\dfrac{x}{y+12}=1\\\dfrac{x}{y-12}-\dfrac{x}{y}=2\end{matrix}\right.\)

Đặt \(\dfrac{x}{y}=a;\dfrac{x}{y+12}=b;\dfrac{x}{y-12}=c\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=1\\c-a=2\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{2}{a}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(\dfrac{1}{b}-\dfrac{1}{a}\right)+\left(\dfrac{1}{c}-\dfrac{1}{a}\right)=0\)

\(\Leftrightarrow\dfrac{a-b}{ab}+\dfrac{a-c}{ac}=0\Leftrightarrow\dfrac{1}{ab}-\dfrac{2}{ac}=0\)

\(\Leftrightarrow\dfrac{1}{a}\left(\dfrac{1}{b}-\dfrac{2}{c}\right)=0\Rightarrow\dfrac{1}{b}=\dfrac{2}{c}\Rightarrow c=2b\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=1\\2b-a=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y}=4\\\dfrac{x}{y+12}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4y\\\dfrac{4y}{y+12}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=144\\y=36\end{matrix}\right.\)

Vậy . . .

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LN
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
AT
Xem chi tiết
LN
Xem chi tiết
QT
Xem chi tiết