Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

PT

Giải hệ phương trình :

                     \(\begin{cases}\left(1-y\right)\sqrt{x^2+2y^2}=x+2y+3xy\left(1\right)\\\sqrt{y+1}+\sqrt{x^2+2y^2}=2y-x\left(2\right)\end{cases}\)  \(\left(x,y\in R\right)\)

DV
11 tháng 4 2016 lúc 21:18

Điều kiện : \(y\ge-1\)

Xét (1) : \(\left(1-y\right)\sqrt{x^2+2y^2}=x+2y+3xy\)

Đặt \(\sqrt{x^2+2y^2}=t\left(t\ge0\right)\)

Phương trình (1) trở thành :

\(t^2+\left(1-y\right)t-x^2-2y^2-x-2y-3xy=0\)

\(\Delta=\left(1-y\right)^2+4\left(x^2+2y^2+x+2y+3xy\right)=\left(2x+3y+1\right)^2\)

\(\Rightarrow\begin{cases}t=-x-y-1\\t=x+2y\end{cases}\) \(\Leftrightarrow\begin{cases}\sqrt{x^2+2y^2}=-x-y-1\\\sqrt{x^2+2y^2}=x+2y\end{cases}\)

Với \(\sqrt{x^2+2y^2}=-x-y-1\) thay vào (2) ta có :

\(\sqrt{y+1}=3y+1\Leftrightarrow\begin{cases}y\ge-\frac{1}{3}\\9y^2+5y=0\end{cases}\)\(\Leftrightarrow y=0\)

\(\Rightarrow\sqrt{x^2}=-x-1\) (vô nghiệm)

Với \(\sqrt{x^2+2y^2}=x+2y\), ta có hệ \(\begin{cases}\sqrt{y+1}=-2x\\\sqrt{x^2+2y^2}=x+2y\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{-1-\sqrt{5}}{4}\\y=\frac{1+\sqrt{5}}{2}\end{cases}\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(\frac{-1-\sqrt{5}}{4};\frac{1+\sqrt{5}}{2}\right)\)

Bình luận (0)
NA
8 tháng 10 2017 lúc 21:43

F

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
PA
Xem chi tiết
PA
Xem chi tiết
PT
Xem chi tiết
PT
Xem chi tiết
DV
Xem chi tiết
NU
Xem chi tiết
PA
Xem chi tiết
BS
Xem chi tiết