\(\begin{cases} x^{2}+y^{2}=2x^{2}y^{2}\\ (x+y)(1+xy)=4x^{2}y^{2} \end{cases}\)
\(\Leftrightarrow\) \(\begin{cases} \dfrac{1}{y^{2}}+\dfrac{1}{x^{2}}=2\\ \dfrac{(x+y)(1+xy)}{x^2y^2}=4 \end{cases}\) \(\Leftrightarrow\) \(\begin{cases} \dfrac{1}{y^{2}}+\dfrac{1}{x^{2}}=2\\ (\dfrac{1}{x}+\dfrac{1}{y})(1+\dfrac{1}{xy})=4 \end{cases}\)
\(\Leftrightarrow\) \(\begin{cases} (\dfrac{1}{x}+\dfrac{1}{y})^2-\dfrac{2}{xy}=2\\ (\dfrac{1}{x}+\dfrac{1}{y})(1+\dfrac{1}{xy})=4 \end{cases}\) \(\Leftrightarrow\) \(\begin{cases} (\dfrac{1}{x}+\dfrac{1}{y})^2-\dfrac{2}{xy}=2\\ (\dfrac{1}{x}+\dfrac{1}{y})(2+\dfrac{2}{xy})=8 \end{cases}\)
\(\Leftrightarrow\) \(\begin{cases} (\dfrac{1}{x}+\dfrac{1}{y})^2-\dfrac{2}{xy}=2\\ (\dfrac{1}{x}+\dfrac{1}{y})(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy})=8 \end{cases}\) \(\Leftrightarrow\)
\(\begin{cases} (\dfrac{1}{x}+\dfrac{1}{y})^2-\dfrac{2}{xy}=2\\ (\dfrac{1}{x}+\dfrac{1}{y})(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy})=8 \end{cases}\) \(\Leftrightarrow\) \(\begin{cases} (\dfrac{1}{x}+\dfrac{1}{y})^2-\dfrac{2}{xy}=2\\ (\dfrac{1}{x}+\dfrac{1}{y})^3=8 \end{cases}\)
\(\Leftrightarrow\) \(\begin{cases} (\dfrac{1}{x}+\dfrac{1}{y})^2-\dfrac{2}{xy}=2\\ \dfrac{1}{x}+\dfrac{1}{y}=2 \end{cases}\) \(\Leftrightarrow\) \(\begin{cases} 4-\dfrac{2}{xy}=2\\ \dfrac{1}{x}+\dfrac{1}{y}=2 \end{cases}\) \(\Leftrightarrow\) \(\begin{cases} \dfrac{2}{xy}=2\\ \dfrac{1}{x}+\dfrac{1}{y}=2 \end{cases}\)
\(\Leftrightarrow\) \(\begin{cases} {xy}=1\\ \dfrac{x+y}{xy}=2 \end{cases}\) \(\Leftrightarrow\) \(\begin{cases} {xy}=1\\ x+y=2 \end{cases}\) (1)
Từ (1),ta suy ra x và ý là 2 nghiệm của phương trình: \(X^2-2X+1=0\)
\(\Leftrightarrow\) \(\left(X-1\right)^2=0\) \(\Leftrightarrow\) \(X=1\) \(\Leftrightarrow\) x=y=1
Vậy (x;y)=(1;1) là nghiệm của hệ phương trình