Chương III - Hệ hai phương trình bậc nhất hai ẩn

NP

Giải hệ phương trình:

\(\begin{cases} x^{2}+y^{2}=2x^{2}y^{2}\\ (x+y)(1+xy)=4x^{2}y^{2} \end{cases}\)

ND
29 tháng 7 2017 lúc 20:30

\(\begin{cases} x^{2}+y^{2}=2x^{2}y^{2}\\ (x+y)(1+xy)=4x^{2}y^{2} \end{cases}\)

\(\Leftrightarrow\) \(\begin{cases} \dfrac{1}{y^{2}}+\dfrac{1}{x^{2}}=2\\ \dfrac{(x+y)(1+xy)}{x^2y^2}=4 \end{cases}\) \(\Leftrightarrow\) \(\begin{cases} \dfrac{1}{y^{2}}+\dfrac{1}{x^{2}}=2\\ (\dfrac{1}{x}+\dfrac{1}{y})(1+\dfrac{1}{xy})=4 \end{cases}\)

\(\Leftrightarrow\) \(\begin{cases} (\dfrac{1}{x}+\dfrac{1}{y})^2-\dfrac{2}{xy}=2\\ (\dfrac{1}{x}+\dfrac{1}{y})(1+\dfrac{1}{xy})=4 \end{cases}\) \(\Leftrightarrow\) \(\begin{cases} (\dfrac{1}{x}+\dfrac{1}{y})^2-\dfrac{2}{xy}=2\\ (\dfrac{1}{x}+\dfrac{1}{y})(2+\dfrac{2}{xy})=8 \end{cases}\)

\(\Leftrightarrow\) \(\begin{cases} (\dfrac{1}{x}+\dfrac{1}{y})^2-\dfrac{2}{xy}=2\\ (\dfrac{1}{x}+\dfrac{1}{y})(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy})=8 \end{cases}\) \(\Leftrightarrow\)

\(\begin{cases} (\dfrac{1}{x}+\dfrac{1}{y})^2-\dfrac{2}{xy}=2\\ (\dfrac{1}{x}+\dfrac{1}{y})(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy})=8 \end{cases}\) \(\Leftrightarrow\) \(\begin{cases} (\dfrac{1}{x}+\dfrac{1}{y})^2-\dfrac{2}{xy}=2\\ (\dfrac{1}{x}+\dfrac{1}{y})^3=8 \end{cases}\)

\(\Leftrightarrow\) \(\begin{cases} (\dfrac{1}{x}+\dfrac{1}{y})^2-\dfrac{2}{xy}=2\\ \dfrac{1}{x}+\dfrac{1}{y}=2 \end{cases}\) \(\Leftrightarrow\) \(\begin{cases} 4-\dfrac{2}{xy}=2\\ \dfrac{1}{x}+\dfrac{1}{y}=2 \end{cases}\) \(\Leftrightarrow\) \(\begin{cases} \dfrac{2}{xy}=2\\ \dfrac{1}{x}+\dfrac{1}{y}=2 \end{cases}\)

\(\Leftrightarrow\) \(\begin{cases} {xy}=1\\ \dfrac{x+y}{xy}=2 \end{cases}\) \(\Leftrightarrow\) \(\begin{cases} {xy}=1\\ x+y=2 \end{cases}\) (1)

Từ (1),ta suy ra x và ý là 2 nghiệm của phương trình: \(X^2-2X+1=0\)

\(\Leftrightarrow\) \(\left(X-1\right)^2=0\) \(\Leftrightarrow\) \(X=1\) \(\Leftrightarrow\) x=y=1

Vậy (x;y)=(1;1) là nghiệm của hệ phương trình

Bình luận (0)

Các câu hỏi tương tự
OO
Xem chi tiết
OO
Xem chi tiết
NC
Xem chi tiết
OO
Xem chi tiết
OO
Xem chi tiết
NM
Xem chi tiết
NV
Xem chi tiết
TA
Xem chi tiết
NM
Xem chi tiết