Chương I - Căn bậc hai. Căn bậc ba

TT

Giải hệ phương trình :

a,\(\left\{{}\begin{matrix}x^2+x=y^2+y\\x^2-y^2=5\end{matrix}\right.\)

b,\(\left\{{}\begin{matrix}x+y+xy=11\\x^2y+xy^2=30\end{matrix}\right.\)

LH
12 tháng 7 2019 lúc 11:02

Căn bậc hai. Căn bậc ba

Bình luận (0)
TP
12 tháng 7 2019 lúc 11:13

a) \(\left\{{}\begin{matrix}x^2+x=y^2+y\\x^2-y^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-y^2=y-x\\y-x=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-\left(x+5\right)^2=x+5-x\\y=x+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-3+5=2\end{matrix}\right.\)

Vậy...

b) \(\left\{{}\begin{matrix}x+y+xy=11\\x^2y+xy^2=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

Đặt \(x+y=a;xy=b\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=11\\ab=30\end{matrix}\right.\)

Áp dụng hệ thức Vi-ét, ta có \(a\)\(b\)là nghiệm của pt sau :

\(p^2-11p+30=0\)

\(\Leftrightarrow\left[{}\begin{matrix}p=5\\p=6\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}a=5\\b=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=5\\xy=6\end{matrix}\right.\)

Giải được \(\left(x;y\right)=\left\{\left(2;3\right);\left(3;2\right)\right\}\)

TH2: \(\left\{{}\begin{matrix}a=6\\b=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=6\\xy=5\end{matrix}\right.\)

Áp dụng hệ thức Vi-ét, ta có \(x\)\(y\)là nghiệm của pt sau :

\(m^2-6m+5=0\)

\(\Leftrightarrow m^2-6m+m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=1\end{matrix}\right.\)

\(\Leftrightarrow\left(x;y\right)=\left\{\left(5;1\right);\left(1;5\right)\right\}\)

Vậy....

Bình luận (0)

Các câu hỏi tương tự
DL
Xem chi tiết
HC
Xem chi tiết
BR
Xem chi tiết
AD
Xem chi tiết
HL
Xem chi tiết
YH
Xem chi tiết
DH
Xem chi tiết
NL
Xem chi tiết
DN
Xem chi tiết