Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

HD

Giải hệ phương trình

1.\(\left\{{}\begin{matrix}x^2=3y-2\\y^2=3x-2\end{matrix}\right.\)

2.\(\left\{{}\begin{matrix}2x+\frac{1}{y}=\frac{3}{x}\\2y+\frac{1}{x}=\frac{3}{y}\end{matrix}\right.\)

3.\(\left\{{}\begin{matrix}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{matrix}\right.\)

4.\(\left\{{}\begin{matrix}x^3=3y+2\\y^3=3x+2\end{matrix}\right.\)

PLEASE HELP ME

AH
3 tháng 1 2020 lúc 0:09

Bài 1:

Lấy PT $(1)$ trừ PT $(2)$ ta có:

\(x^2-y^2=3y-3x\)

\(\Leftrightarrow (x-y)(x+y)+3(x-y)=0\Leftrightarrow (x-y)(x+y+3)=0\)

$\Rightarrow x-y=0$ hoặc $x+y+3=0$

Nếu $x-y=0\Leftrightarrow x=y$. Thay vào PT $(1)$:

\(x^2=3x-2\Leftrightarrow x^2-3x+2=0\Leftrightarrow (x-1)(x-2)=0\)

$\Rightarrow x=1$ hoặc $x=2$

Tương ứng ta thu được $y=1$ hoặc $y=2$

Nếu $x+y+3=0\Leftrightarrow y=-(x+3)$. Thay vào PT $(1)$:

\(x^2=-3(x+3)-2\Leftrightarrow x^2=-3x-11\Leftrightarrow x^2+3x+11=0\)

\(\Leftrightarrow (x+\frac{3}{2})^2=\frac{-35}{4}< 0\) (vô lý)

Vậy..........

Bình luận (0)
 Khách vãng lai đã xóa
AH
3 tháng 1 2020 lúc 0:20

Bài 2:

Lấy PT(1) trừ PT(2) ta có:

\(2x-2y+\frac{1}{y}-\frac{1}{x}=\frac{3}{x}-\frac{3}{y}\)

\(\Leftrightarrow 2(x-y)+(\frac{4}{y}-\frac{4}{x})=0\)

\(\Leftrightarrow (x-y)+\frac{2(x-y)}{xy}=0\)

\(\Leftrightarrow (x-y).\frac{2+xy}{xy}=0\Rightarrow \left[\begin{matrix} x=y\\ xy=-2\end{matrix}\right.\)

Nếu $x=y$. Thay vào PT (1) có:

\(2x+\frac{1}{x}=\frac{3}{x}\Leftrightarrow 2x-\frac{2}{x}=0\Leftrightarrow x^2-1=0\)

\(\Rightarrow x^2=1\Rightarrow x=\pm 1\Rightarrow y=\pm 1\) (tương ứng)

Nếu $xy=-2\Rightarrow \frac{1}{y}=\frac{-x}{2}$

Thay vào PT(1): $2x-\frac{x}{2}=\frac{3}{x}$

$\Leftrightarrow x^2=2\Rightarrow x=\pm \sqrt{2}$

$\Rightarrow y=\mp \sqrt{2}$

Vậy........

Bình luận (0)
 Khách vãng lai đã xóa
AH
3 tháng 1 2020 lúc 0:27

Bài 3: ĐK: $x,y\neq 0$

HPT \(\Leftrightarrow \left\{\begin{matrix} 3x^2y=y^2+2(1)\\ 3xy^2=x^2+2(2)\end{matrix}\right.\)

Lấy PT(1) trừ PT(2) thu được:

\(3xy(x-y)=-(x-y)(x+y)\)

\(\Leftrightarrow 3xy(x-y)+(x-y)(x+y)=0\)

\(\Leftrightarrow (x-y)(3xy+x+y)=0\) \(\Rightarrow \left[\begin{matrix} x=y\\ 3xy=-(x+y)\end{matrix}\right.\)

Nếu $x=y$. Thay vào $(1)$:

\(3x^3=x^2+2\Leftrightarrow 3x^3-x^2-2=0\)

\(\Leftrightarrow (x-1)(3x^2+2x+2)=0\)

Dễ thấy $3x^2+2x+2>0$ nên $x-1=0\Rightarrow x=1\Rightarrow y=1$

Nếu $3xy=-(x+y)$. Lấy $(1)+(2)$ có:

$3xy(x+y)=x^2+y^2+4$

$\Leftrightarrow x^2+y^2+4=-(x+y)^2\leq 0$ (vô lý)

Vậy.......

Bình luận (0)
 Khách vãng lai đã xóa
AH
3 tháng 1 2020 lúc 0:29

Bài 4:

Lấy $(1)$ trừ $(2)$ thu được:

\(x^3-y^3=-3(x-y)\)

\(\Leftrightarrow (x-y)(x^2+xy+y^2)+3(x-y)=0\)

\(\Leftrightarrow (x-y)(x^2+xy+y^2+3)=0\)

Ta thấy:

$x^2+xy+y^2+3=(x+\frac{y}{2})^2+\frac{3}{4}y^2+3>0$ với mọi $x,y$. Do đó $x^2+xy+y^2+3\neq 0$

$\Rightarrow x-y=0\Rightarrow x=y$

Thay vào $(1)$:

$x^3=3x+2$

$\Leftrightarrow x^3-3x-2=0$

$\Leftrightarrow (x-2)(x+1)^2=0\Rightarrow x=2$ hoặc $x=-1$

Nếu $x=2\rightarrow y=2$

Nếu $x=-1\rightarrow y=-1$

Vậy.........

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LQ
Xem chi tiết
NO
Xem chi tiết
PN
Xem chi tiết
PA
Xem chi tiết
KT
Xem chi tiết
AH
Xem chi tiết
AH
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết