Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 9

PT

giải hệ phương trình:

1, \(\left\{{}\begin{matrix}x^2\left(1+y^2\right)=2\\1+xy+x^2y^2=3x^2\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}\left(x+1\right)^2\left(y+1\right)^2=27xy\\\left(x^2+1\right)\left(y^2+1\right)=10xy\end{matrix}\right.\)

NL
6 tháng 2 2019 lúc 21:55

1) \(\left\{{}\begin{matrix}x^2\left(1+y^2\right)=2\\1+xy+x^2y^2=3x^2\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2 +x^2y^2=2\\1+xy+x^2y^2-3x^2=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2=2-x^2y^2\\-3x^2+xy+x^2y^2=-1\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2=2-x^2y^2\\-3\left(2-x^2y^2\right)+xy+x^2y^2=-1\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2=2-x^2y^2\\-6+3x^2y^2+xy+x^2y^2=-1\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2=2-x^2y^2\\-5+4x^2y^2+xy=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2=2-x^2y^2\\-5+4x^2y^2+xy=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2=2-x^2y^2\\\left(4xy+5\right)\left(xy-1\right)=0\end{matrix}\right.\)

Ta có 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}x^2=2-x^2y^2\\4xy+5=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2=2-x^2y^2\\xy=\dfrac{-5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=2-\dfrac{25}{16}\\xy=\dfrac{-5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{\sqrt{7}}{4}\\y=\dfrac{-5}{\sqrt{7}}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x^2=2-x^2y^2\\xy=1\end{matrix}\right.\)\(\left\{{}\begin{matrix}x^2=2-1\\xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\xy=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Bình luận (0)
NL
6 tháng 2 2019 lúc 22:03

Câu 2 mình chưa nghĩ ra. Sorry bạn nheee

Bình luận (0)

Các câu hỏi tương tự
TB
Xem chi tiết
PT
Xem chi tiết
PQ
Xem chi tiết
NN
Xem chi tiết
KZ
Xem chi tiết
KN
Xem chi tiết
KA
Xem chi tiết
TB
Xem chi tiết
KZ
Xem chi tiết