Violympic toán 9

PM

Giải hệ \(\left\{{}\begin{matrix}x-y-z=2\left(\sqrt{yz}+\sqrt{y}+\sqrt{z}-\sqrt{x}\right)\\3\sqrt{yz}=x-\sqrt{3z}+1\end{matrix}\right.\)

PM
31 tháng 1 2020 lúc 21:06

Giúp em với ạ Akai Haruma

Bình luận (0)
 Khách vãng lai đã xóa
AH
31 tháng 1 2020 lúc 21:29

Lời giải:

PT $(1)$ tương đương với:

$x+2\sqrt{x}+1=y+z+2\sqrt{yz}+2\sqrt{y}+2\sqrt{z}+1$

$\Leftrightarrow (\sqrt{x}+1)^2=(\sqrt{y}+\sqrt{z}+1)^2$

\(\left[\begin{matrix} \sqrt{x}=\sqrt{y}+\sqrt{z}\\ \sqrt{x}=-(\sqrt{y}+\sqrt{z})\end{matrix}\right.\)

Nếu $\sqrt{x}=-(\sqrt{y}+\sqrt{z})$

$\Rightarrow \sqrt{x}+\sqrt{y}+\sqrt{z}=0\Rightarrow x=y=z=0$ (không thỏa mãn PT $(2)$)

Nếu $\sqrt{x}=\sqrt{y}+\sqrt{z}$

$\Rightarrow 3\sqrt{yz}=(\sqrt{y}+\sqrt{z})^2-\sqrt{3z}+1$

$\Leftrightarrow \sqrt{yz}=y+z-\sqrt{3z}+1$

$\Leftrightarrow 4y+4z-4\sqrt{yz}-4\sqrt{3z}+4=0$

$\Leftrightarrow (2\sqrt{y}-\sqrt{z})^2+(\sqrt{3z}-2)^2=0$

$\Rightarrow (2\sqrt{y}-\sqrt{z})^2=(\sqrt{3z}-2)^2=0$

$\Rightarrow z=\frac{4}{3}; y=\frac{1}{3}; x=3$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
BB
Xem chi tiết
MD
Xem chi tiết
BL
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
KS
Xem chi tiết
CN
Xem chi tiết