Lời giải:
ĐKXĐ: $x\neq 2; x\neq 0$
a)
\(M=\left[\frac{x(x-2)}{2(x^2+4)}-\frac{2x^2}{(2-x)(x^2+4)}\right].\frac{x^2-x-2}{x^2}=\left[\frac{x(x-2)^2}{2(x^2+4)(x-2)}+\frac{4x^2}{2(x-2)(x^2+4)}\right].\frac{(x-2)(x+1)}{x^2}\)
\(=\frac{x(x-2)^2+4x^2}{2(x-2)(x^2+4)}.\frac{(x-2)(x+1)}{x^2}=\frac{x(x^2+4)}{2(x^2+4)(x-2)}.\frac{(x-2)(x+1)}{x^2}=\frac{x+1}{2x}\)
b)
Để $M$ nguyên thì $x+1\vdots 2x$
$\Rightarrow 2(x+1)\vdots 2x$
$\Rightarrow 2\vdots 2x\Rightarrow 1\vdots x$
Thay vào $M$ thấy $x=1$ thì $M=1$ là số nguyên dương.
c)
$M\geq -3\Leftrightarrow \frac{7x+1}{2x}\geq 0$
\(\left\{\begin{matrix} 7x+1\geq 0\\ 2x>0\end{matrix}\right.\) hoặc \(\left\{\begin{matrix} 7x+1\leq 0\\ 2x< 0\end{matrix}\right.\)
$\Rightarrow x>0$ hoặc $x\leq \frac{-1}{7}$
$\Rightarrow x=\pm 1$