Violympic toán 8

N8

GIẢI GIÚP MÌNH VỚI BÀI NÀY KHÓ QUÁ!

Cho biểu thức \(M=\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)

a)Rút gọn biểu thức M.

b)Tìm x nguyên để biểu thức M có giá trị là số nguyên dương.

c)Tìm x để M≥-3

AH
15 tháng 2 2020 lúc 19:21

Lời giải:

ĐKXĐ: $x\neq 2; x\neq 0$

a)

\(M=\left[\frac{x(x-2)}{2(x^2+4)}-\frac{2x^2}{(2-x)(x^2+4)}\right].\frac{x^2-x-2}{x^2}=\left[\frac{x(x-2)^2}{2(x^2+4)(x-2)}+\frac{4x^2}{2(x-2)(x^2+4)}\right].\frac{(x-2)(x+1)}{x^2}\)

\(=\frac{x(x-2)^2+4x^2}{2(x-2)(x^2+4)}.\frac{(x-2)(x+1)}{x^2}=\frac{x(x^2+4)}{2(x^2+4)(x-2)}.\frac{(x-2)(x+1)}{x^2}=\frac{x+1}{2x}\)

b)

Để $M$ nguyên thì $x+1\vdots 2x$

$\Rightarrow 2(x+1)\vdots 2x$

$\Rightarrow 2\vdots 2x\Rightarrow 1\vdots x$

Thay vào $M$ thấy $x=1$ thì $M=1$ là số nguyên dương.

c)

$M\geq -3\Leftrightarrow \frac{7x+1}{2x}\geq 0$

\(\left\{\begin{matrix} 7x+1\geq 0\\ 2x>0\end{matrix}\right.\) hoặc \(\left\{\begin{matrix} 7x+1\leq 0\\ 2x< 0\end{matrix}\right.\)

$\Rightarrow x>0$ hoặc $x\leq \frac{-1}{7}$

$\Rightarrow x=\pm 1$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
N8
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
KD
Xem chi tiết
LD
Xem chi tiết
HT
Xem chi tiết
MT
Xem chi tiết
HT
Xem chi tiết
NS
Xem chi tiết