Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

JE

giải các pt

a) \(cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)

b) \(2cos\left(3x-\frac{\pi}{3}\right)=1\)

c) \(6cos\left(4x+\frac{\pi}{5}\right)+3\sqrt{3}=0\)

d) \(\frac{4cosx+3}{2cosx+1}=\frac{5}{2}\)

TL
13 tháng 7 2020 lúc 9:56

\(\text{a) }cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}=cos\frac{\pi}{3}\\\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{3}+m2\pi\\x-\frac{\pi}{3}=-\frac{\pi}{3}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+m2\pi\\x=n2\pi\end{matrix}\right.\)

\(\text{b) }pt\Leftrightarrow cos\left(3x-\frac{\pi}{3}\right)=\frac{1}{2}=cos\frac{\pi}{3}\\ \Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{3}=\frac{\pi}{3}+m2\pi\\3x-\frac{\pi}{3}=-\frac{\pi}{3}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{9}+\frac{m2\pi}{3}\\x=\frac{n2\pi}{3}\end{matrix}\right.\)

\(\text{c) }pt\Leftrightarrow cos\left(4x+\frac{\pi}{5}\right)=-\frac{\sqrt{3}}{2}=cos\frac{5\pi}{6}\\ \Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{5}=\frac{5\pi}{6}+m2\pi\\4x+\frac{\pi}{5}=-\frac{5\pi}{6}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{19\pi}{120}+\frac{m\pi}{2}\\x=-\frac{31\pi}{120}+\frac{n\pi}{2}\end{matrix}\right.\)

\(\text{d) }ĐKXĐ:cosx\ne-\frac{1}{2}\Leftrightarrow x\ne\pm\frac{2\pi}{3}+k2\pi\)

\(pt\Leftrightarrow2\left(4cosx+3\right)=5\left(2cosx+1\right)\\ \Leftrightarrow cosx=\frac{1}{2}=cos\frac{\pi}{3}\\ \Leftrightarrow x=\pm\frac{\pi}{3}+m2\pi\)

O pi/3 2pi/3 -pi/3 -2pi/3

Vậy \(x=\pm\frac{\pi}{3}+m2\pi\)

Bình luận (0)

Các câu hỏi tương tự
SB
Xem chi tiết
PT
Xem chi tiết
JE
Xem chi tiết
H24
Xem chi tiết
QN
Xem chi tiết
JE
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
QN
Xem chi tiết