a) \(x^4-x^2-2=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-2\right)=0\)
\(\Leftrightarrow...\)
a)\(x^4-x^2-2=0\)
\(\Leftrightarrow x^4-2x^2+x^2-2=0\)
\(\Leftrightarrow x^2\left(x^2-2\right)+\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+1\right)=0\)
Dễ thấy: \(x^2+1\ge1>0 \forall x\) (loại)
\(\Rightarrow x^2-2=0\Rightarrow x^2=2\Rightarrow x=\pm\sqrt{2}\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{x+y}+\dfrac{1}{x-y}=\dfrac{3}{4}\\\dfrac{1}{x-y}-\dfrac{1}{x+y}=\dfrac{1}{4}\end{matrix}\right.\)
Cộng theo vế 2 pt ta có:
\(\dfrac{1}{x+y}+\dfrac{1}{x-y}+\dfrac{1}{x-y}-\dfrac{1}{x+y}=1\)
\(\Leftrightarrow\dfrac{1}{x-y}+\dfrac{1}{x-y}=1\Leftrightarrow\dfrac{2}{x-y}=1\Leftrightarrow x-y=2\)
Trừ theo vế 2 pt ta có:
\(\dfrac{1}{x+y}+\dfrac{1}{x-y}-\dfrac{1}{x-y}+\dfrac{1}{x+y}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{1}{x+y}+\dfrac{1}{x+y}=\dfrac{1}{2}\)\(\Leftrightarrow\dfrac{2}{x+y}=\dfrac{1}{2}\Leftrightarrow x+y=4\)
Ta có hpt \(\left\{{}\begin{matrix}x-y=2\\x+y=4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)