Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

TN

giải các phương trình sau:

a, 2x4+3x3+5x2+3x+2=0

b,x4-8x3-3x2+32x+4=0

c,2x2+x+2-5\(\sqrt{\left(x^2-4\right)\left(x+1\right)}\) =0

ai biết thì giúp với ạ!!

NL
19 tháng 6 2019 lúc 20:11

a/ Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)

\(\Leftrightarrow2x^2+3x+5+\frac{3}{x}+\frac{2}{x^2}=0\)

\(\Leftrightarrow2\left(x^2+\frac{1}{x^2}\right)+3\left(x+\frac{1}{x}\right)+5=0\)

Đặt \(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2-2\) (\(\left|a\right|\ge2\))

\(\Leftrightarrow2\left(a^2-2\right)+3a+5=0\)

\(\Leftrightarrow2a^2+3a+1=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)

Phương trình vô nghiệm

b/ Số hạng cuối là 4 hay 16 bạn? 4 thì mình ko giải được, phân tách casio cũng ko được

c/ ĐKXĐ:\(\left[{}\begin{matrix}-2\le x\le-1\\x\ge2\end{matrix}\right.\)

\(\Leftrightarrow2x^2+x+2-5\sqrt{\left(x-2\right)\left(x+1\right)\left(x+2\right)}=0\)

\(\Leftrightarrow2\left(x^2-x-2\right)+3\left(x+2\right)-5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x-2}=a\\\sqrt{x+2}=b\end{matrix}\right.\)

\(\Leftrightarrow2a^2+3b^2-5ab=0\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=3b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x-2}=\sqrt{x+2}\\2\sqrt{x^2-x-2}=3\sqrt{x+2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=x+2\\4\left(x^2-x-2\right)=9\left(x+2\right)\end{matrix}\right.\) \(\Leftrightarrow...\)

Bình luận (1)

Các câu hỏi tương tự
NC
Xem chi tiết
NN
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
LT
Xem chi tiết
PL
Xem chi tiết
H24
Xem chi tiết
JE
Xem chi tiết