Dễ mà bạn:\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+8\right)+9\)
\(P=\frac{x^2}{x+4}\left(\frac{x^2+8x+16}{x}\right)+9\)
\(P=\frac{x^2}{x+4}.\frac{\left(x+4\right)^2}{x}+9\)
\(P=x\left(x+4\right)+9=x^2+4x+9\)
\(P=x^2+4x+4+5=\left(x+2\right)^2+5\ge5\)
Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)
Vậy minP=5 khi x=-2
ĐK: x khác 0 và x khác -4
\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+8\right)+9=\frac{x^2}{x+4}\frac{\left(x+4\right)^2}{x}+9=x\left(x+4\right)+9=x^2+4x+4+5=\left(x+2\right)^2+5\ge5\)
GTNN P=5 khi x=-2