-1<=cos(x+30 độ)<=1
=>5>=-5cos(x+30 độ)>=-5
=>18>=y>=8
\(y_{MAX}=18\) khi x+30 độ=k*360 độ
hay x=k*360 độ-30 độ
-1<=cos(x+30 độ)<=1
=>5>=-5cos(x+30 độ)>=-5
=>18>=y>=8
\(y_{MAX}=18\) khi x+30 độ=k*360 độ
hay x=k*360 độ-30 độ
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) y=f(x)=\(\dfrac{4}{\sqrt{5-2cos^2xsin^2x}}\)
b)y=f(x)=\(3sin^2x+5cos^2x-4cos2x-2\)
c)y=f(x)=\(sin^6x+cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
\(y=\dfrac{sinx+3cosx+1}{sinx-cosx+2}\)
tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau:
\(y=2cos^2x-2\sqrt{3}sinxcosx+1\)
Tìm giá trị lớn nhất của hàm số \(y=sin^2x-4sinx-5\)
cho hàm số y = sinx, tìm những giá trị của x trên đoạn[-3π/2 ; 2π] để hàm số đó:
a. Nhận giá trị bằng 0
b. Nhận giá trị bằng -1/2
c. Nhận giá trị bằng giá trị dương
d. Nhận giá trị bằng giá trị âm
e. hàm số nhận giá trị \(\dfrac{\sqrt{3}}{2}\)
tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau
a)\(y=\left(3-sinx\right)^2+1\)
b)\(y=sin^4x+cos^4x\)
c)\(y=sin^6x+cos^6x\)
Tìm giá trị lớn nhất của hàm số y=1/sin2x +1/cos2x
Tìm tập xác định: y=1/căn 3 cot2x+1 Tìm giá trị lớn nhất,nhỏ nhất của hàm số: y= 4cos(2x +π/5) +9
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) \(y=f\left(x\right)=\dfrac{4}{\sqrt{5-2\cos^2x\sin^2x}}\)
b)\(y=f\left(x\right)=3\sin^2x+5\cos^2x-4\cos2x-2\)
c)\(y=f\left(x\right)=\sin^6x+\cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)