Để \(B\) có \(GTLN\) thì \(1,5+x^2\) đạt \(GTNN\)
Ta có: \(x^2+1,5\ge1,5\)
Min \(x^2+1,5=1,5\) khi \(x=0\)
Vậy \(GTLN\) của \(B\) bằng \(2,2\) khi \(x=0\)
Để \(B\) có \(GTLN\) thì \(1,5+x^2\) đạt \(GTNN\)
Ta có: \(x^2+1,5\ge1,5\)
Min \(x^2+1,5=1,5\) khi \(x=0\)
Vậy \(GTLN\) của \(B\) bằng \(2,2\) khi \(x=0\)
giá trị lớn nhất của biểu thức B= 3,3/1,5+x2^
Giá trị lớn nhất của B= \(\frac{3,3}{1,5+x^2}\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Tìm giá trị lớn nhất của biểu thức sau : \(\frac{5}{4\left(x-3\right)^2+2}\)
Bài 8 :
1 . Tìm giá trị lớn nhất của các biểu thức .
a. B = - ( x + 18/1273 ) - 183/124 .
b. C = 15/( x - 8)² + 4 .
2 . Tìm các giá trị của x để các biểu thức sau nhận giá trị dương .
a. A = x² + 6 .
b. B = ( 5 - x ) . ( x + 8 ) .
c. C = ( x - 1 ) . ( x - 2 ) / x - 3 .
Câu 1:
Giá trị nhỏ nhất của biểu thức C là \(\frac{1}{3}\left(x-\frac{2}{5}\right)^2\) + |2y+1| - 2,5
Câu 2:
Cho 2 số x,y thỏa mãn (2x +1)2 + |y-1,2| = 0. Giá trị x,y?
Câu 3:
Giá trị x = __ thì biểu thức D = \(\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2\) - |8x -1| + 2016 đạt giá trị lớn nhất?
Câu 4:
Các số tự nhiên n thỏa mãn \(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
Cách giải luôn nhé!
TÌm giá trị lớn nhất của biểu thức :
\(B=\dfrac{1}{\left|x-2\right|+3}\)
a) Cho biểu thức A=\(\dfrac{2008-x}{8-x}\) Tìm giá trị nguyên của x để A đạt giá trị lớn nhất . Tìm giá trị đó
b)Tìm giá trị nhỏ nhất của biểu thức : P=I2013-xI+I2014-xI
a) Cho biểu thức A=\(\dfrac{2008-x}{8-x}\) Tìm giá trị nguyên của x để A đạt giá trị lớn nhất . Tìm giá trị đó
b)Tìm giá trị nhỏ nhất của biểu thức : P=I2013-xI+I2014-xI