=>2 căn x-1-3 căn x-1=-3
=>-căn x-1=-3
=>x-1=9
=>x=10
=>2 căn x-1-3 căn x-1=-3
=>-căn x-1=-3
=>x-1=9
=>x=10
Cho biểu thức \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}};x\ge0,x\ne1\)
a) Rút gọn P.
b) Tính giá trị của P tại x thỏa mãn \(\left|2x-5\right|=3\)
c) Tìm các giá trị của x để P = 3.
d) Tìm các giá trị của x để \(P>\dfrac{1}{2}\).
e) Tìm các giá trị nguyên của x để P có giá trị nguyên.
cho x,y,z là các số thực thỏa mãn \(\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)=1\)
Tính giá trị biểu thức P=\(\dfrac{\sqrt{y}-\sqrt{z}}{x\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{z}-\sqrt{x}}{y\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{x}-\sqrt{y}}{z\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}\)
Cho biểu thức
M=\(\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right).\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)với x\(\ge\)0;x\(\ne\)4;x\(\ne\)49
a.Rút gọn M
b.Tính giá trị biểu thức của M tại x thỏa mãn \(^{x^2}\)-4x=0
c.Tìm x biết M=\(-\dfrac{\sqrt{x}}{4}\)
d.Tìm x biết M<-1
* Giải phương trình
a. \(\sqrt{\left(x-3\right)^2}=2\)
b. \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
* Cho Q= \(\dfrac{1}{x-2\sqrt{x}+3}\)
Tìm giá trị lớn nhất của Q
cho biểu thức P=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}:\left(\dfrac{x-2}{x-4}-\dfrac{1}{\sqrt{x}+2}\right)\) với x>0;x\(\ne\)1;x\(\ne\)4
1.rút gọn biểu thức P
2.tìm x thỏa mãn P>1
3.tính giá trị của P khi x=\(\dfrac{1}{4}\)
cho biểu thức P=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}:\left(\dfrac{x-2}{x-4}-\dfrac{1}{\sqrt{x}+2}\right)\) với x>0;x\(\ne\)1;x\(\ne\)4
1.rút gọn biểu thức P
2.tìm x thỏa mãn P>1
3.tính giá trị của P khi x=\(\dfrac{1}{4}\)
P=\(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tìm giá trị của x để P=-1
c) Tìm m để với mọi giá trị x>9 ta có m(\(\sqrt{x}-3\)). P >x+1
giúp giải câu c vs ạ
Tính giá trị của đa thức \(\left(x^{31}-5x^{10}+3\right)^{2018}\)
tại x= 9-\(\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
Cho biểu thức:
A=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
với x ≥ 0 và x ≠ 9
a) Rút gọn A
b) Tìm các giá trị của x để A < -1/3
c) Tìm các giá trị của x để A nhận giá trị nhỏ nhất