Ôn tập toán 8

TV

Gía trị của biểu thức \(x^{13}-8x^{12}+8x^{11}-8x^{10}+...-8x^2+8x+8\) tại \(x=7\) là 

VT
27 tháng 6 2016 lúc 20:22

Với \(x=7\) thì \(x^{13}-8x^{12}+8x^{11}-8x^{10}+...-8x^2+8x+8\)

                         \(=-x^{12}+8x^{11}-8x^{10}+...-8x^2+8x+8\)

                          \(=x^{11}-8x^{10}+...-8x^2+8x+8=...=x+8=15\)

Bình luận (0)
LA
27 tháng 6 2016 lúc 20:32

Ta đặt P= \(x^{13}-8x^{12}+8x^{11}-8x^{10}+...-8x^2+8x+8\)=\(x^{13}-8\left(x^{12}-x^{11}+x^{10}-...+x^2-x\right)+8\)

Đặt \(A=x^{12}-x^{11}+x^{10}-...+x^2-x\)(1)

=> \(A\cdot x=x^{13}-x^{12}+x^{11}-...+x^3-x^2\)(2)

Lấy (1)+(2) => \(A\left(x+1\right)=x^{13}-x\)

                    <=> \(A=\frac{x^{13}-x}{x+1}\)

Thay x=7 ta được A= \(\frac{7^{13}-7}{8}\)

=>P=\(7^{13}-8\cdot\frac{7^{13}-7}{8}+8\)=\(15\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
NL
Xem chi tiết
PA
Xem chi tiết
DP
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
NN
Xem chi tiết
TV
Xem chi tiết
DT
Xem chi tiết