\(A=\lim\limits\left(\sqrt{n^2+2n+2}+n\right)=\lim\limits\dfrac{n^2+2n+2-n^2}{\sqrt{n^2+2n+2}-n}=\dfrac{\dfrac{2n}{n}+\dfrac{2}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{2n}{n^2}+\dfrac{2}{n^2}}-\dfrac{n}{n}}=\dfrac{2}{1-1}=+\infty\)
\(A=\lim\limits\left(\sqrt{n^2+2n+2}+n\right)=\lim\limits\dfrac{n^2+2n+2-n^2}{\sqrt{n^2+2n+2}-n}=\dfrac{\dfrac{2n}{n}+\dfrac{2}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{2n}{n^2}+\dfrac{2}{n^2}}-\dfrac{n}{n}}=\dfrac{2}{1-1}=+\infty\)
giá trị của D = lim (căn bậc hai của n^2 +1) - (căn bậc ba của 3n^3 + 2)/(căn bậc bốn của 2n^4 + n + 2) - n =
giá trị của E = lim (căn bậc hai của n^3 + 2n) + 1/(n+2) =
giá trị của B = lim [(căn bậc hai của 2n^2 + 1) - n] =
giá trị của F = lim (căn bậc bốn của n^4 - 2n + 1) + 2n/(căn bậc ba của 3n^3 + n) - n =
giá trị của D = lim (n+1)/n^2[(căn bậc hai của 3n^2 + 2) - (căn bậc hai của 3n^2 - 1)] =
giá trị của M = lim [(căn bậc ba 1 - n^2 - 8n^3) + 2n] =
giá trị của C = lim (căn bậc hai của n^2 +1)/(n+1) =
chọn kết quả đúng của lim căn bậc hai của {3 + [(n^2 - 1)/(3+n^2)] - (1/2^n)]} =
Tìm giới hạn của giá trị:
\(lim\left(\sqrt{n^2+2n}-\sqrt{n^2-2n}\right)\)