Ôn tập cuối năm phần số học

NT

giả sử a,b,c là các số thực dương thỏa mãn a \(\le\) b \(\le\)3\(\le\)c; c\(\ge\)b +1; a+b \(\ge\) c. Tìm giá trị nhỏ nhất của biểu thức \(Q=\dfrac{2ab+a+b+c\left(ab-1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

LF
6 tháng 5 2017 lúc 20:18

bài này xài karamata là đẹp nhất nè nhanh gọn lẹ mà ko bt bn học chưa

Bình luận (0)
LF
6 tháng 5 2017 lúc 21:51

Ahaha :D giỡn xíu lớp 8 có khi AM-HM còn chưa học :3, bài này với bn phải xài khai triển Abel ;))

\(Q=\frac{1}{c+1}+\frac{ab+abc-c-1}{\left ( a+1 \right )\left ( b+1 \right )\left ( c+1 \right )}=\frac{1}{c+1}+\frac{ab-1}{\left ( a+1 \right )\left ( b+1 \right )}\)

\(=\frac{1}{c+1}+\frac{a}{a+1}+\frac{b}{b+1}-1=\frac{a}{a+1}+\frac{b}{b+1}-\frac{c}{c+1}\)

Dự đoán dấu "=" rơi khi \(a=b-1=c-2=1\) nên c/m

\(\frac{a}{a+1}+\frac{b}{b+1}-\frac{c}{c+1}\geq \frac{5}{12}\)

\(\Leftrightarrow \left ( \frac{a}{a+1}-\frac{1}{2} \right )+\left ( \frac{b}{b+1}-\frac{2}{3} \right )+\left ( \frac{3}{4}-\frac{c}{c+1} \right )\geq 0\)

\(\Leftrightarrow \frac{a-1}{2a+2}+\frac{b-2}{3b+3}+\frac{3-c}{4c+4}\geq 0\)

\(\Leftrightarrow \left ( 3-c \right )\left ( \frac{1}{4c+4}-\frac{1}{3b+3} \right )+\left ( 3-c+b-2 \right )\left ( \frac{1}{3b+3}-\frac{1}{2a+2} \right )+\left ( 3-c+b-2+a-1 \right )\frac{1}{2a+2}\geq 0\)

\(\Leftrightarrow \frac{\left ( c-3 \right )\left ( 4c-3b+1 \right )}{12\left ( b+1 \right )\left ( c+1 \right )}+\frac{\left ( b+1-c \right )\left ( 2a-3b-1 \right )}{6\left ( b+1 \right )\left ( a+1 \right )}+\frac{a+b-c}{2a+2}\geq 0\)

Hơi xấu nhỉ nhưng xong rồi đó :)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
HG
Xem chi tiết
QL
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
NL
Xem chi tiết
PT
Xem chi tiết
QL
Xem chi tiết
TT
Xem chi tiết