CHo biểu thức A=\(\frac{8-x}{2+\sqrt[3]{x}}:?\left(2+\frac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\left(\sqrt[3]{x}+\frac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right)\frac{\sqrt[3]{x^2}-4}{\sqrt[3]{x^2}+2\sqrt[3]{x}}\) vỚI x khác 8,-8,0. CMR gt A ko phụ thuộc vào x
LÀM ON GIÚP
Khai triển và rút gọn các biểu thức sau
a) \(\sqrt{16a}+2\sqrt{40a}-3\sqrt{90a}\)( a lớn hơn hoặc bằng 0)
b) \(\left(4\sqrt{x}-\sqrt{2x}\right)\left(\sqrt{x}-\sqrt{2x}\right)\)
c) \(\dfrac{2}{2x-1}\sqrt{5x^2\left(1-4x+4x^2\right)}\)
( x lớn hơn 0,5)
Rút gọn biểu thức \(A=\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\) với x ≥ 2
Bài 1. Cho A=\(\left(\frac{1}{\sqrt{a}-3}+\frac{1}{\sqrt{a}+3}\right)\left(1-\frac{3}{\sqrt{a}}\right)\)
a, Rút gọn biểu thức A
b,Xác định a để biểu thức A >\(\frac{1}{2}\)
Bài 2.Cho B=\(\left(\frac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}+\frac{3}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}-2}\right)\) với x > 0, x \(\ne\)4
a,Rút gọn A
b,Tính A với x=6-\(2\sqrt{5}\)
B1 Cho biểu thức A=\(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{\sqrt{x}+7}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
1, Rút gọn A. Tìm x sao cho A<2
2, Cho 1≤a,b,c≤2. Chứng minh rằng \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)
Rút gọn biểu thức \(p=\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\right).\left(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
GIÚP MÌNH VỚI
Rút gọn các biểu thức sau:
\(D=\left(\frac{5\sqrt{x-6}}{x-9}-\frac{2}{\sqrt{x}+3}\right):\left(1+\frac{6}{x-9}\right)\)
\(E=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{9+x}{9-x}\right).\left(3\sqrt{x}-x\right)\)
Cho biểu thức E=\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\)
a/Rút gọn biểu thức E
b/ Tìm x để E = 2.
c/Tính giá trị của E khi x=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Cho biểu thức: P = \(\left[\frac{\sqrt{x}\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+1\right)^2+3}-\frac{4}{2-\sqrt{x}}+\frac{8\sqrt{x}+32}{8-x\sqrt{x}}\right]\)\(\div\) \(\left(1-\frac{2}{2+\sqrt{x}}\right)\)
a) Rút gọn P
b) Tìm các giá trị chính phương x để p có gúa trị nguyên