+ Đặt \(t=x^2-3x+3\) thì pt đã cho trở thành :
\(\frac{1}{t}+\frac{2}{t+1}=\frac{6}{t+2}\)
\(\Leftrightarrow\frac{t+1+2t}{t\left(t+1\right)}=\frac{6}{t+2}\) \(\Leftrightarrow\frac{3t+1}{t^2+t}=\frac{6}{t+2}\)
\(\Leftrightarrow\left(3t+1\right)\left(t+2\right)=6\left(t^2+t\right)\)
\(\Leftrightarrow3t^2+7t+2=6t^2+6t\)
\(\Leftrightarrow3t^2-t-2=0\)
\(\Leftrightarrow3t^2-3t+2t-2=0\)
\(\Leftrightarrow\left(3t+2\right)\left(t-1\right)=0\)
\(\Leftrightarrow t-1=0\) ( do \(3t+2=3x^2-9x+11\)\(=3\left(x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{17}{12}\right)=3\left[\left(x-\frac{3}{2}\right)^2+\frac{17}{12}\right]>0\forall x\))
\(\Leftrightarrow x^2-3x+3=1\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2+\frac{3}{4}=1\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3}{2}=\frac{1}{2}\\x-\frac{3}{2}=-\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\left(TM\right)\)
Vậy tập nghiệm của pt đã cho là \(S=\left\{1;2\right\}\)
\(\frac{1}{x^2-3x+3}-1+\frac{2}{x^2-3x+4}-1+2-\frac{6}{x^2-3x+5}=0\)
\(\Leftrightarrow\frac{-x^2+3x-2}{x^2-3x+3}+\frac{-x^2+3x-2}{x^2-3x+4}-\frac{2\left(-x^2+3x-2\right)}{x^2-3x+5}=0\)
\(\Leftrightarrow\left(-x^2+3x-2\right)\left(\frac{1}{x^2-3x+3}+\frac{1}{x^2-3x+4}-\frac{2}{x^2-3x+5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x^2+3x-2=0\left(1\right)\\\frac{1}{x^2-3x+3}+\frac{1}{x^2-3x+4}-\frac{2}{x^2-3x+5}=0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\frac{1}{x^2-3x+3}+\frac{1}{x^2-3x+4}-\frac{2}{x^2-3x+5}=0\)
Do \(\left\{{}\begin{matrix}\frac{1}{x^2-3x+3}>\frac{1}{x^2-3x+5}\\\frac{1}{x^2-3x+4}>\frac{1}{x^2-3x+5}\end{matrix}\right.\) \(\forall x\Rightarrow\frac{1}{x^2-3x+3}+\frac{1}{x^2-3x+4}-\frac{2}{x^2-3x+5}>0\)
\(\Rightarrow\left(2\right)\) vô nghiệm