Violympic toán 6

PD

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{499}{1000}\)là dạng bài gì?

BT
14 tháng 3 2019 lúc 22:30

Mình giải luôn ra nha

Tìm x:
1/3+1/6+1/10+.........+2/x.(x+1)=499/1000
1/2.(1/3+1/6+1/10+.......+2/x.(x+1)=499/1000.1/2
1/6+1/12+1/20+.......+1/x.(x+1)=499/2000
1/(2.3)+1/(3.4)+1/(4.5)+.........+1/x.(x+1)=499/2000
1/2-1/3+1/3-1/4+1/4-1/5+........+1/x-1/(x+1)=499/2000
1/2-1/(x+1)=499/2000
1/(x+1)=1/2-499/2000
1/(x+1)=501/2000
\Rightarrow1.2000=(x+1).501
\Rightarrow2000=x.501+501
\Rightarrow1499=x.501
\Rightarrowx=1499:501
Vì x thuộc Z nên 1499:501 là 1 số nguyên.Mà 1499:501 được 1 số thập phân nên x thuộc rỗng.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
RL
Xem chi tiết
PN
Xem chi tiết
BH
Xem chi tiết
DK
Xem chi tiết
MT
Xem chi tiết
KK
Xem chi tiết