Bài 1: Giới hạn của dãy số

JE

\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-3x+2}{x^3+8}\left(x\ne-2\right)\\mx+1\left(x=-2\right)\end{matrix}\right.\)

tìm m để hàm số gián đoạn tại \(x=-2\)

HH
19 tháng 2 2021 lúc 21:48

\(f\left(-2\right)=-2m+1\)

\(\lim\limits_{x\rightarrow-2^+}f\left(x\right)=\lim\limits_{x\rightarrow-2^+}\dfrac{x^2-3x+2}{x^3+8}=\lim\limits_{x\rightarrow-2^+}\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\lim\limits_{x\rightarrow-2^+}\dfrac{x-1}{x^2-2x+4}=\dfrac{-2-1}{4-2.\left(-2\right)+4}=-\dfrac{1}{4}\)

\(f\left(-2\right)\ne\lim\limits_{x\rightarrow-2^-}f\left(x\right)\Leftrightarrow-2m+1\ne-\dfrac{1}{4}\Leftrightarrow m\ne\dfrac{5}{8}\)

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
JE
Xem chi tiết
NT
Xem chi tiết