Tạo số có 4 chữ số bất kì (bao gồm 0 đứng đầu): \(A_5^4=120\) số
Tạo số có 4 chữ số sao cho số 0 đứng đầu (giống như tạo số có 3 chữ số từ các số 1,2,3,4) có \(A_4^3=24\) số
Bây giờ lấy tổng trường hợp 1 trừ tổng trường hợp 2 là ra kết quả cần tìm.
Để dễ hình dung ta gọi số ở TH đầu là abcd, vai trò của các chữ số như nhau, mà ta có thể tạo ra 120 số như vậy, do đó, mỗi vị trí một chữ số sẽ xuất hiện \(120:5=24\) lần
Cụ thể với chữ số 4 đi, theo lý luận bên trên số 4 xuất hiện ở hàng ngàn là 24 lần, hàng trăm 24 lần, hàng chục 24 lần, hàng đơn vị 24 lần, do đó tổng giá trị của chữ số 4 là:
\(24.4.1000+24.4.100+24.4.10+24.4.1=24.4.1111\)
Tương tự với các chữ số khác, ta được tổng của trường hợp đầu là:
\(24.4.1111+24.3.1111+24.2.1111+24.1.1111+24.0.1111=266640\)
- Với trường hợp 2, y hệt như trên, mỗi chữ số xuất hiện ở 1 vị trí \(\dfrac{24}{4}=6\) lần
Do đó tổng các chữ số ở TH này là:
\(6.4.111+6.3.111+6.2.111+6.1.111=6660\)
Kết quả: \(266640-6660=259980\)