Ta có :
\(\dfrac{-x^2+2xy-y^2}{x+y}=\dfrac{-\left(x-y\right)^2}{x+y}=-\dfrac{\left(x-y\right)^2\left(y-x\right)}{\left(x+y\right)\left(y-x\right)}=\dfrac{\left(x-y\right)^3}{\left(x+y\right)\left(y-x\right)}=\dfrac{x^3-3x^2y+3xy^2-y^3}{\left(y^2-x^2\right)}\)