Violympic toán 9

NT

\(D=\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-1\right)\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}+1\right)\)

Rút gọn D

H24
1 tháng 7 2019 lúc 17:43

\(D=\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}-\sqrt{xy}+1}{\sqrt{xy}-1}\right)\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}-\frac{\sqrt{xy}+\sqrt{x}-\sqrt{xy}+1}{\sqrt{xy}-1}\right)\)

\(D=\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{x}+1}{\sqrt{xy}-1}\right)\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}-\frac{\sqrt{x}+1}{\sqrt{xy}-1}\right)\)

\(D=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{xy}+1\right)^2}-\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{xy}-1\right)^2}\)

\(D=\left(\sqrt{x}+1\right)^2\left(\frac{1}{\left(\sqrt{xy}+1\right)^2}-\frac{1}{\left(\sqrt{xy}-1\right)^2}\right)\)

\(D=\left(\sqrt{x}+1\right)^2\cdot\frac{xy+1-2\sqrt{xy}-xy-1-2\sqrt{xy}}{\left(xy-1\right)^2}\)

\(D=\frac{\left(\sqrt{x}+1\right)^2\cdot\left(-4\sqrt{xy}\right)}{\left(xy-1\right)^2}\)

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
VH
Xem chi tiết
DH
Xem chi tiết
TT
Xem chi tiết
AA
Xem chi tiết
NV
Xem chi tiết
TT
Xem chi tiết
LD
Xem chi tiết
VH
Xem chi tiết