Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 9

DC

Định m để pt sau có ba nghiệm phân biệt

x^3-(2m+1)x^2+3(m+4)x-m-12=0

AH
23 tháng 9 2018 lúc 17:58

Lời giải:

\(x^3-(2m+1)x^2+3(m+4)x-m-12=0\)

\(\Leftrightarrow (x^3-x^2)-(2mx^2-2mx)+(mx-m)+(12x-12)=0\)

\(\Leftrightarrow x^2(x-1)-2mx(x-1)+m(x-1)+12(x-1)=0\)

\(\Leftrightarrow (x-1)(x^2-2mx+m+12)=0\)

Để pt đã cho có 3 nghiệm phân biệt thì pt:

\(x^2-2mx+m+12=0\) phải có 2 nghiệm phân biệt khác 1:

\(\Leftrightarrow \left\{\begin{matrix} \Delta'=m^2-(m+12)>0\\ 1^2-2m.1+m+12\neq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (m-4)(m+3)>0\\ 13-m\neq 0\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} m> 4\\ m< -3\end{matrix}\right.\) và $m\neq 13$

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
VN
Xem chi tiết
BB
Xem chi tiết
NT
Xem chi tiết
BB
Xem chi tiết
DC
Xem chi tiết
HG
Xem chi tiết
NT
Xem chi tiết
NS
Xem chi tiết