Cho: \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\). Tính giá trị của biểu thức: \(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}\)
CMR: Nếu: \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\) thì: \(\dfrac{x^{2021}+y^{2021}+z^{2021}}{a^{2021}+b^{2021}+c^{2021}}=\dfrac{x^{2021}}{a^{2021}}+\dfrac{y^{2021}}{b^{2021}}+\dfrac{z^{2021}}{c^{2021}}\)
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) và\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\).C/m rằng: \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
Cho a, b, x, y, z là các số khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\ne0\). CMR: \(\dfrac{a^2-bc}{x}=\dfrac{b^2-ca}{y}=\dfrac{c^2-ab}{z}\)
Chứng minh rằng nếu \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\) thì: \(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}\)
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\)và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\).Khi đó giá trị của biểu thức \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2011\)=.........
Cho \(\dfrac{x}{a}\) \(+\) \(\dfrac{y}{b}+\dfrac{z}{c}\)= 0 và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\) = 2
Tính A = \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\). Chứng minh rằng: \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
Giúp hộ!!!
cho a,b,c,x,y,z > 0 chứng minh rằng : \(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}\ge\dfrac{\left(x+y+z\right)^2}{a+b+c}\)