1.giải pt
a)\(\dfrac{16-x}{4}=\dfrac{2x+1}{3}\)
b)(2x+3)(1-3x)=9x\(^2\)-1
c)\(\dfrac{2x}{x+1}+\dfrac{x-1}{x}=\dfrac{2x^2+3x-1}{x^2+x}\)
Giải các phương trình sau :
a,\(\dfrac{2}{2x+1}-\dfrac{3}{2x-1}=\dfrac{4}{4x^2-1}\)
b,\(\dfrac{2x}{x+1}+\dfrac{18}{x^2+2x-3}=\dfrac{2x-5}{x+3}\)
c,\(\dfrac{1}{x-1}+\dfrac{2x^2-5}{x^3-1}=\dfrac{4}{x^2+x+1}\)
a,\(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\)
b,\(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
Cộng các phân tử:
a)\(\dfrac{2x-3}{x}+\dfrac{1-x}{x+2}+\dfrac{4x}{x-1}\)
b)\(\dfrac{1}{1+x}+\dfrac{1}{x-1}+\dfrac{3x}{1-x^2}\)
c)\(\dfrac{x^3}{x+1}+\dfrac{x^2}{x-1}+\dfrac{1}{x+1}+\dfrac{1}{x-1}\)
d)\(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
Giải các phương trình sau:
a) (2x-1)2-(3x+5)(2x-1)=0
b)\(\dfrac{x+5}{4}-\dfrac{2x-3}{3}=\dfrac{2x-1}{12}\)
c)\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{-4}{1-x^2}\)
d)\(\dfrac{1}{x+1}+\dfrac{2x-1}{x^3+1}=\dfrac{2}{x^2-x+1}\)
4.Giải phương trình
a) \(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\)
b)\(\dfrac{1}{x-1}+\dfrac{2}{x+1}=\dfrac{x}{x^2-1}\)
c)\(5+\dfrac{76}{x^2-16}=\dfrac{2x-1}{x+4}-\dfrac{3x-1}{4-x}\)
d)\(\dfrac{90}{x}-\dfrac{36}{x-6}=2\)
e)\(\dfrac{1}{x}+\dfrac{1}{x+10}=\dfrac{1}{12}\)
f)\(\dfrac{x+3}{x-3}-\dfrac{1}{x}=\dfrac{3}{x\left(x-3\right)}\)
g)\(\dfrac{3}{x+2}-\dfrac{2}{x-2}+\dfrac{8}{x^2-4}=0\)
h)\(\dfrac{3}{x+2}-\dfrac{2}{x-3}=\dfrac{8}{\left(x-3\right)\left(x+2\right)}\)
i)\(\dfrac{x}{2x+6}-\dfrac{x}{2x+2}=\dfrac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
k)\(\dfrac{x}{x+1}-\dfrac{2x-3}{1-x}=\dfrac{3x^2+5}{x^2-1}\)
l)\(\dfrac{5}{x+7}+\dfrac{8}{2x+14}=\dfrac{3}{2}\)
m)\(\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)
Cần gấp ạ
Tính:
\(a,\dfrac{x+3}{2x-1}-\dfrac{x^2-5}{4x^2-4x+1}-\dfrac{2x^3+5x^2-x-1}{8x^3-12x^2+6x-1}\)
\(b,\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
( \(\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\) ). \(\dfrac{4x^2-4}{5}\)
\(\dfrac{x}{x-3}-\dfrac{x^2+3x}{2x+3}.\left(\dfrac{x+3}{x^2-3x}-\dfrac{x}{x^2-9}\right)\)
\(\left(\dfrac{x+1}{x}\right)^2:\left(\dfrac{x^2+3}{x^2}+\dfrac{2}{x+1}.\left(\dfrac{1}{x}+1\right)\right)\)
Giải PT sau:
a, 3x - 7 = 0
b, 8 - 5x = 0
c, 3x - 2 = 5x + 8
d, \(\dfrac{3x-2}{3}\) = \(\dfrac{1-x}{2}\)
e, ( 5x + 1)(x - 3) = 0
f, (x + 1)(2x - 3) = 0
g, 4x(x + 3) - 5(x + 3) = 0
h, 8(x - 6) - 2x(6 - x) = 0
i, \(\dfrac{2}{x-1}\) + \(\dfrac{1}{x}\) = \(\dfrac{2x+5}{x^2-x}\)
k, \(\dfrac{3}{x+2}\) - \(\dfrac{2}{x-2}\) = \(\dfrac{2-x}{x^2-4}\)
m, \(\dfrac{3}{x}\) - \(\dfrac{2}{x-3}\) = \(\dfrac{4-x}{x^2-3}\)
n,\(\dfrac{3}{2x+10}\)+ \(\dfrac{2x}{x^2-25}\) = \(\dfrac{3}{x-5}\)
u, \(\dfrac{2}{x+3}\) - \(\dfrac{3}{x-2}\) = \(\dfrac{x+4}{\left(x+3\right)\left(x-2\right)}\)
(\(\dfrac{3}{6-2x}-\dfrac{3-x}{6+2x}-\dfrac{2x^2}{x^2-9}\))(\(\dfrac{1}{x}-\dfrac{1}{3}\))
CMR:biểu thức không phụ thuộc x