\(\dfrac{3x-5}{7}+\dfrac{4x+5}{7}=\dfrac{3x-5+4x+5}{7}=\dfrac{7x}{7}=x\)
\(\dfrac{3x-5}{7}+\dfrac{4x+5}{7}=\dfrac{3x-5+4x+5}{7}=\dfrac{7x}{7}=x\)
Thực hiện các phép tính sau :
a) \(\dfrac{3x-5}{7}+\dfrac{4x+5}{7}\)
b) \(\dfrac{5xy-4y}{2x^2y^3}+\dfrac{3xy+4y}{2x^2y^3}\)
c) \(\dfrac{x+1}{x-5}+\dfrac{x-18}{x-5}+\dfrac{x+2}{x-5}\)
\(\dfrac{7}{x}\) + \(\dfrac{3}{x-3}\) - \(\dfrac{4x-3}{x^2-3x}\)
Thực hiện phép cộng các phân thức sau:
\(\dfrac{5x-1}{3x^2y}+\dfrac{x+1}{3x^2y}\\ \dfrac{7}{12xy^2}+\dfrac{11}{18x^3y}\\ \dfrac{x}{x+2}+\dfrac{7x-16}{\left(x+2\right)\left(4x-7\right)}\)
Cộng các phân thức khác mẫu thức :
a) \(\dfrac{5}{6x^2y}+\dfrac{7}{12xy^2}+\dfrac{11}{18xy}\)
b) \(\dfrac{4x+2}{15x^3y}+\dfrac{5y-3}{9x^2y}+\dfrac{x+1}{5xy^3}\)
c) \(\dfrac{3}{2x}+\dfrac{3x-3}{2x-1}+\dfrac{2x^2+1}{4x^2-2x}\)
d) \(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\)
Rút gọn:
a)\(\dfrac{2}{2x+1}-\dfrac{1}{2x-1}+\dfrac{4}{4x^2-1}\)
b)\(\dfrac{4x^2-3x+5}{x^3+1}-\dfrac{1-2x}{x^2+x+1}-\dfrac{6}{x-1}\)
giúp mk chiều nay rùi
a,\(\dfrac{7}{8x^2-18}+\dfrac{1}{2x^2+3x}-\dfrac{1}{4x-6}\)
b,\(\dfrac{3x^2+5x+14}{x^3+1}+\dfrac{x-1}{x^2-x+1}-\dfrac{4}{x+1}\)
c,\(\left(x^2-1\right)-\dfrac{x^4-3x^2-4}{x^2+1}\)
làm phép tính
\(\dfrac{x}{x^2+2xy}+\dfrac{1}{x-2y}+\dfrac{4y}{4y^2-x^2}\)
\(\dfrac{2x}{x-1}+\dfrac{5x^2-5}{x^2+2x+1}.\dfrac{2x+2}{5-5x}\)
\(\left(\dfrac{2x}{2x-1}+\dfrac{3x}{2x+1}\right).\dfrac{4x^2-4x+1}{8x^2+10x}\)
\(\dfrac{5x-5}{2x}.\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\)
GIÚP MÌNH VỚI CÁC BẠN
Làm tính cộng các phân thức sau :
a) \(\dfrac{5}{2x^2y}+\dfrac{3}{5xy^2}+\dfrac{x}{y^3}\)
b) \(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x\left(x+3\right)}\)
c) \(\dfrac{3x+5}{x^2-5x}+\dfrac{25-x}{25-5x}\)
d) \(x^2+\dfrac{x^4+1}{1-x^2}+1\)
e) \(\dfrac{4x^2-3x+17}{x^3-1}+\dfrac{2x-1}{x^2+x+1}+\dfrac{6}{1-x}\)
\(\dfrac{y}{2x^2-xy}+\dfrac{4x}{y^2-2xy}\)
\(\dfrac{1}{x+2}+\dfrac{3}{x^2-4}+\dfrac{x-14}{\left(x^2+4x+4\right).\left(x-2\right)}\)
\(\dfrac{1}{x+2}+\dfrac{1}{\left(x+2\right).\left(4x+7\right)}\)
\(\dfrac{1}{x+3}+\dfrac{1}{\left(x+3\right).\left(x+2\right)}+\dfrac{1}{\left(x+2\right).\left(4x+7\right)}\)