Bài 5: Phép cộng các phân thức đại số

HA

\(\dfrac{2x^2+4x}{x^3-4x}+\dfrac{x^2-4}{x^2+2x}+\dfrac{2}{2-x}\)

HT
21 tháng 12 2017 lúc 20:11

Hỏi đáp Toán

Bình luận (0)
HN
21 tháng 12 2017 lúc 20:19

\(\dfrac{2x^2+4x}{x^3-4x}+\dfrac{x^2-4}{x^2+2x}+\dfrac{2}{2-x}\)

\(=\dfrac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{x\left(x+2\right)}-\dfrac{2}{x-2}\)\(=\dfrac{2x^2+4x+\left(x^2-4\right)\left(x-2\right)-2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x^2+4x+x^3-2x^2-4x+8-2x^2-4x}{x\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^3-2x^2-4x+8}{x\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{\left(x^3+8\right)-\left(2x^2+4x\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)\left(x^2-2x+4\right)-2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)\left(x^2-2x+4-2x\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)\left(x^2-4x+4\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x-2}{x}.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HD
Xem chi tiết
SK
Xem chi tiết
BA
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
BB
Xem chi tiết
VN
Xem chi tiết