Bài 2: Tỉ số lượng giác của góc nhọn

BA

\(\Delta ABC\) vuông tại A , phân giác BD . Chứng minh tan\(\frac{\widehat{ABC}}{2}\) = \(\frac{AC}{AB+BC}\)

TH
30 tháng 9 2020 lúc 22:12

Hình bạn tự vẽ nha!

Ta có: tan \(\frac{ABC}{2}\) = \(\frac{AD}{AB}\) (1)

Xét tam giác ABC có: BD là đường p/g ứng với AC (D \(\in\) AC)

\(\Rightarrow\) \(\frac{AD}{AB}=\frac{DC}{BC}\) (tính chất đường phân giác của tam giác)

Mặt khác: \(\frac{AD}{AB}=\frac{DC}{BC}=\frac{AD+DC}{AB+BC}=\frac{AC}{AB+BC}\) (tính chất dãy tỉ số bằng nhau) (2)

Từ (1) và (2) \(\Rightarrow\) tan \(\frac{ABC}{2}=\frac{AC}{AB+BC}\) (đpcm)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
ND
Xem chi tiết
MT
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
HA
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
AD
Xem chi tiết