Gọi số xe loại 30 chỗ ngồi là x(xe)
số xe loại 45 chỗ ngồi là y(xe)
ĐK: \(0< x,y< 11\), \(x,y\in N\)
Theo đề ta có: \(x+y=11\)(*)
Số học sinh ngồi trên xe loại 30 chỗ ngồi: \(30x\) (học sinh)
Số học sinh ngồi trên xe loại 45 chỗ ngồi: \(45y\) (học sinh)
Theo đề ta lại có: \(30x+45y=435\)(**)
Từ (*) và (**), ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=11\\30x+45y=435\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}45x+45y=495\\30x+45y=435\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15x=60\\y=11-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)(thoả mãn điều kiện)
Vậy 4 xe loại 30 chỗ ngồi và 7 loại xe 45 chỗ ngồi.
Gọi x là số xe 30 chỗ, y là số xe 45 chỗ (x, y > 0)
theo đề bài ta có hệ phương trình sau:
\(\left\{{}\begin{matrix}x+y=11\\30x+45y=435\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)
Mik chỉ cho bạn đáp án vì năm nay toan61 thực tề được phép xài máy tính nha! Chúc bạn thi tốt!