Violympic toán 9

VH

Đề ôn tập 1

Câu 1 a(1.5đ) , Tính giá trị biểu thức \(M=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+4+...+2020+2021}\right)\)

b(1.5đ), Cho 3 số thực x,y,z thỏa mãn 2xy+2yz+2zx=0 . Tính giả trị biểu thức S = \(\frac{yz}{8x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}\left(x,y,z\ne0\right)\)

Câu 2 a(3đ), Giải phương trình \(2x^2+5x-1=7\sqrt{x^3-1}\)

b, (3đ)Giải hệ phương trình \(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\sqrt{y+1}+\sqrt{2-x}=\sqrt{3}\end{matrix}\right.\)

Câu 3 Cho tam giác ABC nhọn ,trực tâm H . Qua H kẻ 1 đường thẳng bất kì cắt AB ,AC tại D và E sao cho HD=HE. Vẽ MH vuông góc DE tại H ( M thuộc BC) . Chứng minh a, AH.MH=HE.MB (1,5đ) b, M là trung điểm BC (1.5đ)

Câu 4 a,(1,5đ) Tìm số tự nhiên n để A là số chính phương biết \(n^4+2n^3+2n^2+n+7\)

b,(1,5đ) Tìm các cặp số nguyên (x;y) thỏa \(x^4+2x^2=y^3\)

Câu 5 (2đ) Cho điểm A nằm ngoài đường tròn (O;R) .Vẽ các tiếp tuyến AB,AC với đường tròn (O) với B,C là các tiếp điểm . Vẽ cát tuyến ADE của đường tròn (O) và AD<AE tia AD nằm giữa 2 tia AO và AB . Gọi F là điểm đối xứng của D qua AO và H là giao điểm của EF và BC . Chứng minh A,O,H thẳng hàng .

Câu 6 a,(2đ) Cho x ,y,z>0 và \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2020\)

Tính GTNN của D = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

b,(1đ) Chứng minh rằng với mọi số nguyên n thì phân số B là phân số tối giản biết B = \(\frac{n^3+2n}{n^4+3n^2+1}\)


Các câu hỏi tương tự
VH
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
LV
Xem chi tiết
LH
Xem chi tiết
KS
Xem chi tiết
TH
Xem chi tiết
NH
Xem chi tiết