Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

HD

Đề: Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+y\le z\end{matrix}\right.\) tìm Min của \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\) Làm thế này không biết đúng ko

Ta có :A= \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{z^2}{x^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{y^2}{z^2}\)

=> A \(=3+\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)

Áp dụng BĐT Cauchy ta có

\(A\ge3+2+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)=6+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)

Do \(x+y\le z\Rightarrow\dfrac{x}{z}+\dfrac{y}{z}\le1\) ; Đặt \(u=\dfrac{x}{z}\); \(v=\dfrac{y}{z}\)

\(\Rightarrow\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}=\dfrac{1}{u^2}+\dfrac{1}{v^2}\ge\dfrac{2}{uv}\ge\dfrac{2}{\dfrac{\left(u+v\right)^2}{4}}\ge\dfrac{2}{\dfrac{1}{4}}=8\)

\(\Rightarrow A\ge6+\dfrac{15}{16}.8=\dfrac{27}{2}\) Vậy minA = \(\dfrac{27}{2}\) khi \(x=y=\dfrac{z}{2}\)

HD
10 tháng 12 2017 lúc 13:23

@Unruly Kid

Bình luận (2)
UK
10 tháng 12 2017 lúc 14:09

@Akai Haruma @Hung nguyen @Ace Legona

Bình luận (0)
LF
13 tháng 12 2017 lúc 18:15

\(BDT\Leftrightarrow\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{z^2}{x^2}+\dfrac{x^2}{z^2}+3\)

Áp dụng BĐT AM-GM:\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\ge2\)

\(\Rightarrow VT\ge\)\(\dfrac{y^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{z^2}{x^2}+\dfrac{x^2}{z^2}+5\)

Lần lượt có các đánh giá: \(\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\ge\dfrac{1}{2}\left(\dfrac{x+y}{z}\right)^2\)

\(\dfrac{z^2}{y^2}+\dfrac{z^2}{x^2}\ge\dfrac{1}{2}\left(\dfrac{4z}{x+y}\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{2}\left(\dfrac{4z}{x+y}\right)^2+\dfrac{1}{2}\left(\dfrac{x+y}{z}\right)^2+5\)

Đặt \(t=\dfrac{z}{x+y}\ge1\) thì ta được:

\(\Rightarrow VT\ge8t^2+\dfrac{1}{2t^2}+5\)\(\ge\dfrac{17}{2}+5=\dfrac{27}{2}\)

Bình luận (4)
H24
6 tháng 8 2021 lúc 9:30

đúng r bn ạ

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
TV
Xem chi tiết
KR
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết