Ôn thi vào 10

QL

[CUỘC THI TRÍ TUỆ VICE]

Xem thêm tại: Cuộc thi Trí tuệ VICE | Facebook

*Trả lời đúng và hay sẽ được nhận 1-2GP/câu trả lời nha ^^

-----------------------------------------------------------

[Toán.C491 _ 21.3.2021]

undefined

[Toán.C492 _ 21.3.2021]

Cho a,b,c > 0 và a + b + c = 3. Tìm min của A =  \(\Sigma\dfrac{a}{b^2c+1}\).

[Toán.C493 _ 21.3.2021]

Cho a,b,c > 0 và ab + bc + ca = 3. Tìm min của

B = \(\dfrac{a}{2b^3+1}+\dfrac{b}{2c^3+1}+\dfrac{c}{2a^3+1}\).

[Toán.C494-498 _ 21.3.2021]

undefined

 

NH
21 tháng 3 2021 lúc 17:17

498undefined

Bình luận (0)
H24
21 tháng 3 2021 lúc 15:47

C493
$\dfrac{a}{2b^3+1}=a.(1-\dfrac{2b^3}{2b^3+1})$

Áp dụng bđt Cauchy có: $b^3+b^3+1 \geq 3.\sqrt[]{b^3.b^3.1}=3b^2$

$⇒\dfrac{2b^3}{2b^3+1} \leq \dfrac{2b^3}{3b^2}=\dfrac{2b}{3}$

$⇒\dfrac{a}{2b^3+1} \geq a.(1-\dfrac{2b}{3})$

Tương tự ta có: $\dfrac{b}{2c^3+1} \geq b.(1-\dfrac{2c}{3})$

$\dfrac{c}{2a^3+1} \geq c.(1-\dfrac{2a}{3})$

Nên $B \geq a.(1-\dfrac{2b}{3})+b.(1-\dfrac{2c}{3})+c.(1-\dfrac{2a}{3})=a+b+c-\dfrac{2(ab+bc+ca)}{3}$

$ \geq \sqrt[]{3(ab+bc+ca)}-\dfrac{2.(ab+bc+ca)}{3}=1$

Dấu $=$ xảy ra $⇔a=b=c=1$

Vậy $MinB=1$ tại $a=b=c=1$

Bình luận (0)
H24
21 tháng 3 2021 lúc 16:06

C493
$\dfrac{a}{b^2c+1}=a.(1-\dfrac{b^2c}{b^2c+1})$

Áp dụng bđt Cauchy có: $b^2c+1 \geq 2.\sqrt[]{b^2c.1}=2b\sqrt[]c$

$⇒\dfrac{b^2c}{b^2c+1} \leq \dfrac{b^2c}{2b\sqrt[]c}=\dfrac{b\sqrt[]c}{2} leq \dfrac{b(c+1)}{4}$

$⇒\dfrac{a}{b^2c+1} \geq a.(1-\dfrac{b(c+1)}{4})$

Tương tự ta có: $\dfrac{b}{c^2a+1} \geq b.(1-\dfrac{c(a+1)}{4})$

$\dfrac{c}{a^2b+1} \geq c.(1-\dfrac{a(b+1)}{4})$

Nên $A \geq a.(1-\dfrac{b(c+1)}{4})+ b.(1-\dfrac{c(a+1)}{4})+c.(1-\dfrac{a(b+1)}{4})$

$=a+b+c-\dfrac{3abc+ab+bc+ca}{4}$

$\geq a+b+c-\dfrac{3\dfrac{(a+b+c)^3}{27}+\dfrac{(a+b+c)^2}{3}}{4}$

$=3-\dfrac{3+3}{4}$

$=\dfrac{3}{2}$

Dấu $=$ xảy ra $⇔a=b=c=1$

Vậy $MinA=\dfrac{3}{2}$ với $a=b=c=1$

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết