Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

LD

\(\cos5x+2\sin x\cos x+2\sin3x\sin2x=0\)

H24
4 tháng 10 2018 lúc 20:57

cos5x+2sinxcosx+2sin3xsin2x=0

⇔cos5x+2sinxcosx+\(\dfrac{1}{2}\)(cosx-cos5x)*2=0

⇔cos5x+2sinxcosx+cosx-cos5x=0

⇔cosx(1+2sinx)=0

⇔cosx=0 hoặc sinx=\(\dfrac{-1}{2}\)

⇔x=\(\dfrac{\Pi}{2}+k\Pi\) hoặc x=\(\dfrac{-1}{6}\Pi+k2\Pi\) hoặc x=\(\dfrac{7}{6}\Pi+k2\Pi\) với k∈Z

Bình luận (0)
AH
4 tháng 10 2018 lúc 23:54

Lời giải:

\(\cos 5x+2\sin x\cos x+2\sin 3x\sin 2x=0\)

\(\Leftrightarrow \cos (3x+2x)+2\sin x\cos x+2\sin 3x\sin 2x=0\)

\(\Leftrightarrow \cos 3x\cos 2x-\sin 3x\sin 2x+2\sin x\cos x+2\sin3x\sin 2x=0\)

\(\Leftrightarrow (\cos 3x\cos 2x+\sin 3x\sin 2x)+2\sin x\cos x=0\)

\(\Leftrightarrow \cos (3x-2x)+2\sin x\cos x=0\)

\(\Leftrightarrow \cos x(1+2\sin x)=0\)

\(\Rightarrow \left[\begin{matrix} \cos x=0\\ 1+2\sin x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} \cos x=0\\ \sin x=\frac{-1}{2}\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=k\pi+\frac{\pi}{2}\\ x=\frac{-\pi}{6}+2k\pi\\ x=\frac{7\pi}{6}+2k\pi\end{matrix}\right.\) (k nguyên)

Bình luận (0)

Các câu hỏi tương tự
MH
Xem chi tiết
DN
Xem chi tiết
DT
Xem chi tiết
TV
Xem chi tiết
JE
Xem chi tiết
TT
Xem chi tiết
HH
Xem chi tiết
LH
Xem chi tiết