\(\frac{2+\sin^2\cos^2}{1+\cos^2}=\frac{2+\left(1-\cos^2\right)\cos^2}{1+\cos^2}=\frac{\left(1-\cos^4\right)+\left(1+\cos^2\right)}{1+\cos^2}\)
\(=\frac{\left(1+\cos^2\right)\left(1-\cos^2+1\right)}{1+\cos^2}=1+\sin^2\)
\(\frac{2+\sin^2\cos^2}{1+\cos^2}=\frac{2+\left(1-\cos^2\right)\cos^2}{1+\cos^2}=\frac{\left(1-\cos^4\right)+\left(1+\cos^2\right)}{1+\cos^2}\)
\(=\frac{\left(1+\cos^2\right)\left(1-\cos^2+1\right)}{1+\cos^2}=1+\sin^2\)
\(CMR:\sin^6a+\cos^6a=1-3\sin^2a\cos^2a\)
\(CMR:\frac{\tan^2a-\sin^2a}{\cosh^2a-\cos^2a}=\tan^6a\)
rút gọn:
a, A=\(\frac{sina+sin2a+sin3a}{cosa+cos2a+cos3a}\)
b, B=\(\frac{sin^2a+sin^2a.tan^2a}{cos^2a+cos^2a.cot^2a}\)
Chứng minh: \(\dfrac{sin^2a-tan^2a}{cos^2a-cot^2a}\) = tan6a
VỚI tam giác ABC bất kì , tìm giá trị lớn nhất của
M = \(\dfrac{\sin^2A+\sin^2B+\sin^2C}{\cos^2A+\cos^2B+\cos^2C}\)
đơn giản biểu thức:
a, \(\left(\frac{sin\alpha+tan\alpha}{cos\alpha+1}\right)^2+1\)
b, \(tan\alpha\left(\frac{1+cos^2\alpha}{sin\alpha}-sin\alpha\right)\)
c, \(\frac{cot^2\alpha-cos^2\alpha}{cot^2a}+\frac{sin\alpha.cos\alpha}{cot\alpha}\)
Chứng minh rằng:
a) \(sin\left(a+b\right).sin\left(a-b\right)=sin^2a-sin^2b=cos^2b-cos^2a\)
b) \(4sin\left(x+\dfrac{\Pi}{3}\right).sin\left(x-\dfrac{\Pi}{3}\right)=4sin^2x-3\)
c) \(sin\left(x+\dfrac{\Pi}{4}\right)-sin\left(x-\dfrac{\Pi}{4}\right)=\sqrt{2}cosx\)
d) \(\dfrac{1}{sin10^0}-\dfrac{\sqrt{3}}{cos10^0}=4\)
Rút gọn biểu thức:
\(\frac{4\sin^2a}{1-\cos^2\frac{a}{2}}\)
Cho DABC thỏa điều kiện : \(sin^2A+sin^2B+cos^2C+\frac{1}{4}=2sinA.sinB+cosC.\) Chứng minh rằng DABC đều.