Ôn tập toán 8

PA

CMR với mọi số nguyên dương n thì các  phân số sau tối giảin

a. \(\frac{3n+1}{5n+2}\)

b.\(\frac{n^3+2n}{n^4+3n^2+1}\)

HN
11 tháng 8 2016 lúc 10:14

a) Đặt \(A=\frac{3n+1}{5n+2}\). Gọi ƯCLN(3n+1 , 5n+2) = d \(\left(d\ge1\right)\) 

Khi đó : \(3n+1⋮d\) và \(5n+2⋮d\)

\(\Rightarrow5\left(3n+1\right)⋮d\) và \(3\left(5n+2\right)⋮d\)

\(\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\le1\) mà \(d\ge1\Rightarrow d=1\)

Suy ra ƯCLN(3n+1 , 5n+2) = 1 , vậy A là phân số tối giản.

b)  Đặt \(B=\frac{n^3+2n}{n^4+3n^2+1}\) . Gọi ƯCLN(n3+2n , n4+3n2+1) = d \(\left(d\ge1\right)\)

Khi đó : \(B=\frac{n\left(n^2+2\right)}{n^2\left(n+2\right)+n^2+1}\)

Ta có : \(n\left(n^2+2\right)⋮d\) và \(n^2\left(n+2\right)+n^2+1⋮d\)

Từ  \(n\left(n^2+2\right)⋮d\) \(\Rightarrow\left[\begin{array}{nghiempt}n⋮d\\n^2+2⋮d\end{array}\right.\)

TH1. Nếu \(n⋮d\) thì ta viết dưới mẫu thức B dưới dạng : 

\(n\left(n^3+3n\right)+1⋮d\) . mà n(n3+3n)\(⋮\)d => \(1⋮d\) \(\Rightarrow d\le1\)

Mà \(d\ge1\Rightarrow d=1\). Lập luận tương tự câu a) , suy ra đpcm

TH2. Nếu \(n^2+2⋮d\) thì ta viết mẫu thức B dưới dạng : 

\(\left(n^4+2n^2\right)+\left(n^2+2\right)-1=\left(n^2+2\right)\left(n^2+1\right)-1⋮d\)

mà  n2+2 \(⋮\)d nên \(1⋮d\Rightarrow d\le1\) mà \(d\ge1\) => d = 1

Lập luận tương tự...

 

Bình luận (0)
LF
11 tháng 8 2016 lúc 9:48

a)Gọi UCLN(3n+1;5n+2) là d

Ta có:

[3(5n+2)]-[5(3n+1)] chia hết d

=>[15n+6]-[15n+5] chia hết d

=>1 chia hết d.Suy ra 3n+1 và 3n+5 là số nguyên tố cùng nhau

=>Phân số tối giản 

b)Gọi d là UCLN(n3+2n;n4+3n2+1)

Ta có:

n3+2n chia hết d =>n(n3+2n) chia hết d

=>n4+2n2 chia hết d (1)

n4+3n2-(n4+2n2)=n2+1 chia hết d

=>(n2+1)2=n4+2n2+1 chia hết d (2)

Từ (1) và (2) => (n4+3n2+1)-(n4-2n2) chia hết d

=>1 chia hết d

=>d=1.Suy ra n3+2n và n4+3n2+1 là 2 số nguyên tố cùng nhau

=>Phân số trên tối giản 

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TA
Xem chi tiết
TD
Xem chi tiết
HG
Xem chi tiết
DN
Xem chi tiết
LT
Xem chi tiết
NH
Xem chi tiết
MC
Xem chi tiết
CD
Xem chi tiết