Violympic toán 8

BB

CMR trong 1 tứ giác , tổng 2 đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy

NL
22 tháng 2 2019 lúc 13:17

A B C D O

Áp dụng BĐT tam giác cho các tam giác OAB, OBC, OCD, ODA ta có:

\(\left\{{}\begin{matrix}OA+OB>AB\\OB+OC>BC\\OC+OD>CD\\AO+OD>AD\end{matrix}\right.\)

\(\Rightarrow OA+OB+OB+OC+OC+OD+OA+OD>AB+BC+CD+AD\)

\(\Rightarrow2\left(AC+BD\right)>\left(AB+BC+CD+DA\right)\)

\(\Rightarrow AC+BD>\dfrac{AB+BC+CD+DA}{2}\)

Tương tự, áp dụng BĐT tam giác cho các tam giác ABC,BCD, CDA, DAB ta có: \(AB+BC>AC;BC+CD>BD;CD+DA>AC;DA+AB>BD\)

Cộng vế với vế:

\(2\left(AB+BC+CD+DA\right)>2\left(AC+BD\right)\)

\(\Leftrightarrow AC+BD< AB+BC+CD+DA\)

Bình luận (0)