Cho phương trình bậc 2: (m - 1)x2 - 2mx + m + 1 = 0.
a) Tìm m, biết phương trình có nghiệm x = 0.
b) Xác định giá trị của m để phương trình có tích 2 nghiệm bằng 5, từ đó hãy tính tổng 2 nghiệm của phương trình.
Cho a,b,c (c≠0) các số đôi một khác nhau, biết : \(\left\{{}\begin{matrix}x^2+ax+bx=0\\x^2+bx+ax=0\end{matrix}\right.\) có ít nhất 1 nghiệm chung
a)Tìm các nghiệm còn lại của 2 phương trình
b) CMR: các nghiệm còn lại của 2 phương trình là nghiệm của phương trình \(x^2+cx+ab=0_{ }\)
a) cho phương trình x2+ax+b+1=0 có 2 nghiệm nguyên dương .CMR a2+b2 là một hợp số
b) cho 3 phương trình ax2+2bx+c=0(1);bx2+2cx+a=0(2);cx2+2ax+b=0(3) với a,b,c khác 0 .CMR ít nhất một trong 3 phương trình trên đây có nghiệm
Cho \(x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}\) là 1 nghiệm của phương trình: \(ax^2+bx+1\). Với a, b là các số hữu tỉ. Tìm a và b
Cho phương trình ẩn x: x2 – 2mx + 4 = 0 (1)
a) Giải phương trình đã cho khi m = 3.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: ( x1 + 1 )2 + ( x2 + 1 )2 = 2.
Cho phương trình x2 - (m + 5)x - m + 6 = 0 (1)
a) Giải phương trình với m = 1
b) Tìm các giá trị của m để phương trình (1) có một nghiệm x = - 2
: Cho phương trình: x2 + 2 (m + 1)x + m2 = 0. (1)
a. Giải phương trình với m = 5
b. Tìm m để phương trình (1) có 2 nghiệm phân biệt, trong đó có 1 nghiệm bằng - 2
Cho phương trình ẩn x: x2 – x + 1 + m = 0 (1)
a) Giải phương trình đã cho với m = 0.
b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: x1x2.( x1x2 – 2 ) = 3( x1 + x2 ).
Cho \(A=\sqrt{x}.\left(1-\sqrt{x}\right)\) (0<x<1). Tìm giá trị của A khi x là nghiệm của phương trình: \(x-3\sqrt{x}+2=0\)