\(A=n^5-n\)
Theo định lí nhỏ Fermat, ta có: 5 là số nguyên tố
nên \(A=n^5-n⋮5\left(1\right)\)
\(A=n^5-n=n\left(n^4-1\right)\)
\(=n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)
Vì n;n-1;n+1 là ba số liên tiếp
nên \(n\left(n+1\right)\left(n-1\right)⋮3!=6\)
=>A chia hết cho 6(2)
Từ (1)và (2) suy ra A chia hết cho 30