Violympic toán 6

NH

Bài 2:

a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản

b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản

giúp mk với

mk sẽ tick cho!!

mk đng rất cần nó

TH
15 tháng 4 2020 lúc 18:22

a, N = \(\frac{5n+7}{2n+1}\) với n \(\ne\) \(\frac{-1}{2}\) và n \(\in\) Z

Phân số tối giản có dạng \(\frac{1}{x}\) với x \(\ne\) 0

\(\Rightarrow\) 5n + 7 = 1

\(\Rightarrow\) n = \(\frac{-1}{7}\)

Vậy n = \(\frac{-1}{7}\) thì phân số trên tối giản

b, \(\frac{5-2n}{4n+5}\) với n = \(\frac{-5}{4}\) và n \(\in\) Z

Phân số tối giản có dạng \(\frac{1}{x}\) với x \(\ne\) 0

\(\Rightarrow\) 5 - 2n = 1

\(\Rightarrow\) n = \(\frac{5}{2}\)

Vậy n = \(\frac{5}{2}\) thì phân số trên tối giản

Chúc bn học tốt

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
DX
Xem chi tiết
LM
Xem chi tiết
LM
Xem chi tiết
LM
Xem chi tiết
NA
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết