Violympic toán 8

LT

CMR: \(\left(n^6+n^4-2n^2\right)⋮72\) với mọi n la số nguyên.

KB
28 tháng 10 2018 lúc 22:31

\(n^6+n^4-2n^2\)

\(=n^2\left(n^4+n^2-2\right)\)

\(=n^2\left[\left(n^4-1\right)+n^2-1\right]\)

\(=n^2\left[\left(n^2-1\right)\left(n^2+1\right)+n^2-1\right]\)

\(=n^2\left(n^2-1\right)\left(n^2+1+1\right)\)

\(=n^2\left(n^2-1\right)\left(n^2+2\right)\)

\(=n\left(n-1\right)\left(n+1\right)n\left(n^2+2\right)\)

Bình luận (0)
KB
28 tháng 10 2018 lúc 23:00

Xét \(n=2k\) , ta có :

\(\left(2k\right)^2\left[\left(2k\right)^2-1\right]\left[\left(2k\right)^2+2\right]=4k^2\left(2k-1\right)\left(2k+1\right)\left(4k^2+2\right)\)

\(=8k^2\left(2k-1\right)\left(2k+1\right)\left(2k^2+1\right)⋮8\left(1\right)\)

Xét \(n=2k+1\) , ta có :

\(\left(2k+1\right)^2\left[\left(2k+1\right)^2-1\right]\left[\left(2k+1\right)^2+2\right]=\left(2k+1\right)^2.2k\left(2k+2\right)\left(4k^2+4k+1+2\right)\)

\(=\left(2k+1\right)^2.4k\left(k+1\right)\left(4k^2+4k+3\right)⋮8\left(2\right)\)

( do \(k\left(k+1\right)⋮2\Rightarrow4k\left(k+1\right)⋮8\) )

Với n \(⋮3\Rightarrow n^2⋮9\) \(\Rightarrow n^2\left(n^2-1\right)\left(n^2+2\right)⋮9\left(3\right)\)

Với n \(⋮3̸\) \(\Rightarrow n^2:3\) ( dư 1 ) \(\Rightarrow n^2-1⋮3\Rightarrow n^2+2⋮3\)

Do \(n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n^2\left(n-1\right)\left(n+1\right)\left(n^2+2\right)⋮9\left(4\right)\)

Từ ( 1 ) ; ( 2 ) ; ( 3 ) ; ( 4 )

\(\Rightarrow n^6+n^4-2n^2⋮72\left(đpcm\right)\)

haha

Bình luận (0)

Các câu hỏi tương tự
BT
Xem chi tiết
DN
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
DS
Xem chi tiết
AD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết